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Deep Crystalline Drilling
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Name Location Years Depth
[km]

Diam. 
[in] Purpose

Kola SG-3 NW USSR 1970-1992 12.2 8½ 
Geologic Exploration + 
Technology
Development

Fenton Hill (3) New Mexico 1975-1987 3, 4.2, 4.6 8¾, 9⅞ Enhanced Geothermal

Urach-3 SW Germany 1978-1992 4.4 5½ Enhanced Geothermal

Gravberg Central 
Sweden 1986-1987 6.6 6½ Gas Wildcat in Siljan

Impact Structure

Cajon Pass California 1987-1988 3.5 6¼ Geomechanics near San 
Andreas Fault

KTB (2) SE Germany 1987-1994 4, 9.1 6, 6½
Geologic Exploration + 
Technology 
Development

Soultz-sous-
Forêts GPK (3) NE France 1995-2003 5.1, 5.1, 

5.3 9⅝ Enhanced Geothermal
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Characterization Borehole

 Drill/case sedimentary section
– Minimal testing (not DBFT focus)

 Drill crystalline basement section
– Core 150 m over 3 km (5%)
– Hydrofracture stress tests
– Borehole geophysics
– Basement production log
– Pore/fracture water samples

 Packer tool via work-over rig
– Shut-in pressure tests
– Packer pumping/slug tests
– Tracer and heater tests

Borehole designed to maximize 
likelihood of good samples
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Characterization Targets/Methods
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 Field Test Drivers
– Why?

 Science Objectives
– What are goals?

 Char. Targets
– What to measure?

 Field Activities
– What will we do?

 Borehole Design
Kuhlman et al. 2015



CB: Profiles
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 Borehole Geophysics
 Coring/Cuttings/Rock Flour
 Sample-based Profiles

– Fluid density/temperature/major ions
– Pumped samples from high-k regions
– Samples from cores in low-k regions

 Drilling Parameters Logging
– Mud fluids/solids/dissolved gases
– Torque, weight-on-bit, etc.

 Testing-Based Profiles
– Static formation pressure
– Formation hydraulic/transport properties
– In situ stress (hydrofrac + breakouts)

Kuhlman et al. 2015



Borehole Breakouts: Historical

 Leeman (1964) was the first to consider breakouts on a mine 
wall as being the result of stress concentration

 Cox (1970), a Schlumberger field engineer, first noted their 
regional persistence

 Bell and Gough (1979) noted that the breakouts were aligned 
with the regional stresses

 Zoback et al. (1985) theoretically related far-field stresses to 
breakout size characteristics

 Laboratory experiments (Haimson and Herrick 1986) supported 
the suppositions of Bell and Gough and Zoback et al.
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Wellbore Breakout Images
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Wellbore cross-sections from digital 
processing of the televiewer signal

Unwrapped image from an ultrasonic borehole 
televiewer. Breakouts appear as dark bands of 
low reflectance on opposite sides of the 
wellbore. (Zoback et al. 2003)



Stresses Around Wellbore
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   min
hmin Hmax p3 2S S P

   max
Hmax hmin p3 2S S P

Variation of effective principal stresses around a borehole with 
respect to SHmax for a hypothetical strike-slip/normal faulting 
stress state (SHmax ≈ Sv > Shmin) at a depth of 5 km

Modified from Moos (2006)

200 MPa = 29,000 psi



Breakouts in Deep Boreholes

 San Andreas Fault Observatory at Depth – 3.1 km
– Breakouts from 0.8 to 2.2 km (pilot hole total depth, Hickman and Zoback 

2004)
 Cajon Pass (Baumgärtner et al. 1991; Shamir and Zoback 1992)

– Breakouts from 1.7- 3.5 km (to total depth)
 KTB (Mastin et al. 1991; Brudy et al. 1997) – 9.1 km total depth

– Breakouts used for stress orientation below 3 km
[VB (pilot hole) – 3 to 4 km; HB (main hole) – 3 to 8.6 km]

 Kola Superdeep Borehole – 12.2 km total depth
– Breakouts start at 0.5 km (Kozlovsky 1984; Zoback et al. 1986)

 Blanche-1 (S. Australian HDR geothermal well)
– Breakouts from 1.1- 1.4 km (1.9 km total depth) (Klee et al. 2011)
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Predicting Breakouts

 World Stress Map
– based on fault plane solutions and breakout orientations
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(Heidbach et al. 2010)



Breakouts in Granitic Rock

 Dog-ear breakout shape is stable
– modeling (Zheng et al. 1989, 

Herrick and Haimson 1994;       
Shen et al. 2002);  

– laboratory experiments       
(Haimson 2007)

 Breakouts in granitic rock are 
generally shallow (Zang and 
Stephansson 2010)

11

Shmin

SHmax

AECL underground research lab in Pinawa, Manitoba Lee & Haimson (1993).



Addressing Breakouts in DBFT

 Controlling breakout formation
– Site selection
– Maintain excess fluid pressure (∆P) in the wellbore via mud weight
– Clean/ream borehole to remove broken rock

 Canister design
– Bevel edges to reduce chance getting caught on extruding rock 
– Make smaller OD canister 

• Canister filled with incompressible material for same ID 
• Fill material bearing some of down-hole hydrostatic stress
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CB: Environmental Tracers
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 Vertical Profiles
– Noble gases (He + Ne)
– Stable water isotopes
– Atmospheric radioisotope 

tracers (e.g., 81Kr, 129I, 36Cl)
– 238U/234U ratios
– 87Sr/86Sr ratios

 Long-Term Data
– Water provenance
– Flow mechanisms
Minerals → pores →
fractures

Fluid Sample Quality + Quantity will be Very Important!
Repeatability between DST, packer & core samples?



CB: Hydrogeologic Testing

 Hydrologic Property Profiles
– Static formation pressure
– Permeability / compressibility

• Pumping/sampling in high K
• Pulse testing in low K

 Borehole Tracer Tests
– Single-well injection-withdrawal
– Vertical dipole
– Understand transport pathways

 Hydraulic Fracturing Tests
– σh magnitude

 Borehole Heater Test
– Surrogate canister with heater
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Deep Borehole Field Test

Characterization & siting are different from:
– Mined waste repositories

• More geologic isolation – less “site mapping”
• Single-phase fluid flow
• Less steep pressure gradients 

– Oil/gas or mineral exploration
• Crystalline basement vs sedimentary rocks
• Low-permeability 
• Avoid mineralization
• Avoid overpressure

– Geothermal exploration
• Low geothermal gradient
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