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ABSTRACT

The CARDS (ggsk Rail Car Qynamic §imu1ator) model was
modified to simulate. the cask-rail car systems used in
Tests 13, 16 and 18 of the series of rail car coupling
tests conducted at the Savannah River Laboratories (SRL)
in July and August of 1978. An assessment of how well

CARDS simulates the behavior of these cask-rail car sys-
tems was made by comparing calculated and experimental

values of four response variables. This completes the
development and validation of the CARDS model.
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DYNAMIC ANALYSIS TO ESTABLISH

NORMAL SHOCK AND VIBRATION

OF RADIOACTIVE

MATERIAL SHIPPING PACKAGES

Quarterly Progress Report

April 1, 1981 - Jdune 30, 198]

SUMMARY OF PROGRESS

1. DEVELOP DYNAMIC MODEL

The development of the basic CARDS (Cask Rail Car Dynamic Simulator) model has
been completed. During this reporting period, the basic model was modified to
simulate the cask-rail car systems used in Tests 13, 16 and 18 of the series

of rail car coupling tests conducted at the Savannah River Laboratories (SRL)
in July and August of 1978. These modifications were supplemented with adjust-
ments suggested by comparisons of calculated and experimentally measured values
of the horizontal force of interaction between the cask and rail car. The
modified model was then validated by comparing calculated and measured values
of four additional response variables.

3.  VALIDATE MODEL

The validation of the CARDS model was completed with the comparison of meas-
ured results from Tests 13, 16 and 18 with corresponding results calculated
using the CARDS model. An assessment of how well CARDS simulates the behavior
of the cask-rail car systems used in these tests was made by comparing calcu-
lated and measured values of the horizontal force of interaction between the
cask and rail car, the horizontal acceleration of the rail car, the horizontal
acceleration of the cask, the vertical acceleration of the cask at the far
end, and the vertical acceleration of the cask at the struck end. The coupler
force measured during these tests was used as the force of excitation causing
the system simulated by CARDS to vibrate.

The simulations of Tests 13, 16 and 18 were initially guided by comparisons

of measured and calculated values of the horizontal force of interaction for
Test 16. Differences between the measured and calculated values of this force
for Test 16 were attributed to horizontal slippage between the cask and the
rail car that resuited in an energy loss to the system. When this energy loss
or "slippage" was accounted for in the model by modifying the stiffnesses of
the horizontal components of the cable tiedowns, good agreement between the
measured and calculated values of the horizontal interaction force and the




other four response variables was realized. When these modifications were
applied, without change, to the simulation of the cask-rail car systems used
in Tests 13 and 18, substantial reductions were realized in the differences
between the measured and calculated values of the five response variables
compared.

On the basis of the comparisons of measured and calculated results for Tests
3, 10, 11, 13, 16 and 18, it is concluded that the CARDS model is an accept-
able tool for the prediction of the dynamic response of a cask-rail car system
jmpacting a stationary train of cars at speeds up to 11 mph.




INTRODUCTION

The objective of this study is to determine the extent to which the shocks and
vibrations experienced by radiocactive material shipping packages during normal
transport conditions are influenced by or are sensitive to various structural
parameters of the transport system (i.e., package, package supports, and
vehicle). The purpose of this effort is to identify those parameters that
significantly affect the normal shock and vibration environments so as to
provide the basis for determining the forces transmitted to radioactive
material packages. Determination of these forces will provide the input data
necessary for a broad range of package-tiedown structural assessments.

Progress on this study from April 1, 1981 to June 30, 1981 will now be dis-
cussed. This is the last progress report in this series. The next report
will be a final report summarizing the development and validation of the CARDS
model, and the results of a parametr1c and sensitivity analysis using response
spectra as figures of merit.




PROGRESS TO DATE

This study is divided into six tasks as discussed in previous progress

reports. These previous progress reports are:

S. R. Fields, Dynamic Analysis to Establish Normal Shock.and Vibration
Environments Experienced by Radioactive Material Shipping Packages,
NUREG/CR-0071, (HEDL-TME /78-19), Quarterly Progress Report {(October 1 -
December 31, 1977), Hanford Engineering Development Laboratory, May 1978..

S. R. Fields and S. J. Mech, Dynamic Analysis to Establish Normal Shock
and Vibration of Radioactive Material Shipping Packages, NUREG/CR-0161,
(HEDL-TME 78-41), Quarterly Progress Report (January 1 - March 31, 1978),
Hanford Engineering Development Laboratory, July 1978.

S. R. Fields and S. J. Mech, Dynamic Analysis to Establish Normal Shock
and Vibration of Radioactive Material Shipping Packages, NUREG/CR-0448,
(HEDL-TME 78-74), Quarterly Progress Report (April 1 - June 30, 1978),
Hanford Engineering Development Laboratory, December 1978.

S. R. Fields and S. J. Mech, Dynamic Analysis to Establish Normal Shock
and Vibration of Radioactive Material Shipping Packages, NUREG/CR-0589,
(HEDL-TME 78-102), Quarterly Progress Report (July 1 - September 30,
1978), Hanford Engineering Development Laboratory, March 1979.

S. R. Fields and S. J. Mech, Dynamic Analysis to Establish Normal Shock
and Vibration of Radioactive Material Shipping Packages, NUREG/CR-0766,
(HEDL-TME 79-3), Quarterly Progress Report (October 1 - December 31,
1978), Hanford Engineering Development Laboratory, June 1979.

S. R. Fields and S. J. Mech, Dynamic Analysis to Establish Normal Shock
and Vibration of Radjoactive Material Shipping Packages, NUREG/CR-0880,
(HEDL-TME 79-29), QuarterTy Progress Report (January 1 - March 31, 1979),
Hanford Engineering Development Laboratory, July 1979.

S. R. Fields and S. J. Mech, Dynamic Analysis to Establish Normal Shock
and Vibration of Radioactive Material Shipping Packages, NUREG/CR-1066,
(HEDL-TME 79-43), Quarterly Progress Report (April 1 - June 30, 1979),
Hanford Engineering Development Laboratory, October 1979.

S. R. Fields and S. J. Mech, Dynamic Analysis to Establish Normal Shock
and Vibration of Radioactive Material Shipping Packages, NUREG/CR-1265,
(HEDL-TME 79-7/1), Quarterly Progress Report (July 1 - September 30,
1979), Hanford Engineering Development Laboratory, March 1980.

S.-R. Fields and S. J. Mech, Dynamic Analysis to Establish Normal Shock
and Vibration of Radioactive Material Shipping Packages, NUREG/CR-1484,
(HEDL-TME 80-24), Quarterly Progress Report (October 1 - December 31,
1979), Hanford Engineering Development Laboratory, August 1980.




10. S. R. Fields, Dynamic Analysis to Establish Normal Shock and Vibration of
Radioactive Material Shipping Packages, NUREG/CR-1685, Volume T,
(HEDL-TME 80-57), Quarterly Progress Report (January 1 - March 31, 1980),

Hanford Engineering Development Laboratory, January 1981.

11. S. R. Fields, Dynamic Analysis to Establish Normal Shock and Vibration of
Radioactive Material Shipping Packages, NUREG/CR-1685, Volume 2,
(HEDL-TME 80-72), Quarterly Progress Report (April 1 - June 30, 1980),
Hanford Engineering Development Laboratory, April 1981.

12. S. R. Fields, Dynamic Analysis to Establish Normal Shock and Vibration of
Radioactive Material Shipping Packages, NUREG/CR-1685, Volume 3,
(HEDL-TME 80-9T), QuarterTy Progress Report (July 1 - September 30,
1980), Hanford Engineering Development Laboratory, April 1981.

13. S. R. Fields, Dynamic Analysis to Establish Normal Shock and Vibration of
Radioactive Material Shipping Packages, NUREG/CR-1685, Volume 4,
(HEDL-TME 80-92), QuarterTy Progress Report (October 1 - December 31,
1980), Hanford Engineering Development Laboratory, July 1981.

14. S. R. Fields, Dynamic Analysis to Establish Normal Shock and Vibration of
Radioactive Material Shipping Packages, NUREG/CR-2146, Volume 1,
(HEDL-TME 81-T5), Quarterly Progress Report (January 1 - March 31, 1981),
Hanford Engineering Development Laboratory, November 1981.

NOTICE OF ERRORS IN PREVIOUS REPORTS

Errors were found in three of the above previously published quarterly

reports. These reports are Volumes 2, 3 and 4 of NUREG/CR-1685 (HEDL-TME
80-72, HEDL-TME 80-91 and HEDL-TME 80-92, respectively). In these reports, all
frequencies are angular frequencies and should be reported in units of radians/
second rather than in units of Hz. This applies to all figures with frequency
as the abscissa, and to all references to frequency in the texts of the
reports. - :

1. DEVELOP DYNAMIC MODEL

The development of the basic CARDS (Cask Rail Car Qynamic_§imu]ator) model has
been completed. During this reporting period, the basic model was modified to
simulate the character1stics of the cask-rail car systems used in Tests 13, 16
and 18 of the series of rail car-coupling: tests conducted at the Savannah
River Laboratories:(SRL) in July and August of -1978.: These modifications were
supplemented with adjustments suggested by comparisons of calculated and
experimentally measured values of the horizontal force of interaction between
the cask and rail car. These modifications and adjustments are d1scussed in
detail in" Sect1on 3. VALIDATE 'MODEL.




2. DATA COLLECTION AND REDUCTION

This task has been completed.

3.  VALIDATE MODEL

The validation of the CARDS model was completed with the comparison of meas-
ured results from Tests 13, 16 and 18, conducted at SRL in July and August of
1978, with corresponding results calculated using the CARDS model.

An assessment of how well the CARDS model simulates the behavior of the
cask-rail car systems used in these tests was made by comparing calculated and
measured values of the horizontal force of interaction between the cask and
rail car, the horizontal acceleration of the rail car, the horizontal accel-
eration of the cask, the vertical acceleration of the cask at the far end, and
the vertical acceleration of the cask at the struck end. The coupler force
measured during these tests was used as the force of excitation causing the
system simulated by CARDS to vibrate. This coupler force is shown in Figures
6, 14 and 20 for Tests 16, 13 and 18, respectively.

The cask used in Tests 13, 16 and 18 was the 40-ton Hallam cask used in Test 3
(see Figure 1, Table 1 and Reference 1). Unlike the box-shaped 70-ton cask
used in Tests 10 and ]],(2) this cylindrical cask was mounted on and secured
to a cradle structure that served as part of the tiedown structure. In Test
3, this cradle structure was fastened to a rail car with bolts; but, in Tests
13, 16 and 18, it was fastened to a different rail car (a different one for
each of these three tests) with cables. As reported in Reference 1, good
agreement between the calculated and experimental results for Test 3 was
obtained only after allowance was made for slack in the vertical tiedown
structure at the far end (opposite the struck end of the car). This slack,

or looseness, in the tiedowns was evident in high speed films of Test 3. The
films showed rain water being ejected from the collar at the far end of the
cask at impact. Also, it was recalled that a rubber shim had been installed
between the collar and the cask. When this gap and rubber shim combination
was considered as part of the tiedown structure, and an appropriate non-1linear
stiffness coefficient devised, good agreement between the calculated and
experimental results was obtained. This same non-linear representation of the
stiffness coefficient for the vertical component of the rear tiedowns was
used, without change, in the simulations of Tests 13, 16 and 18.

In Tests 10 and 11, the 70-ton cask was bolted directly to the rail car. As
shown in Figure 1 and Table 1, the same rail car was used in Tests 3, 10 and
11. This rail car was a Seaboard Coastline (SCL) flat, bulkhead car with
standard couplers. For Tests 13 and 16, an 80-ton flat rail car with three-
wheeled trucks was used. The 80-ton rail car was equipped with a standard
coupler on one end for use in Test 16, and a 15-inch travel end-of-car (EOC)
cushion device on the opposite end for use in Test 13. This latter car is
referred to as the 80-ton Union Carbide car because the Union Carbide Corpora-
tion converted it for transporting canisters placed in a welded, "saw-toothed"
rack superstructure added to the top of the car.(3) For Test 18, a SCL flat

P




bulkhead car with a cushion underframe coupling mechanism was used. The prin-
c1pa1 difference between this car _and the one used in Tests 3, 10 and 11 was

in the coupling mechanism used.

The CARDS model is a complex two-dimensional, multi-degree-of-freedom model
that determines the horizontal, vertical, and rotational motion of both the
cask and its rail car following impact with an anvil train during coupling
operations. Results of a parametric and sensitivity analysis, using CARDS and
the cask-rail car configuration of Test 3, showed that the relative vertical
and rotational accelerations (of the cask relative to the rail car) are highly
sensitive and sensitive, respectively, to the horiz nSa] distance between the
centers-of-gravity (c.g.) of the cask and rail car. This horizontal dis-
tance, given the parameter name lgcr in Reference 4, is highlighted in Fig-
ures 2 through 5. Figures 2, 3, 4 and 5 are sketches of the cask-rail car
configurations used in Tests 3 and 18, 10 and 11, 13, and 16, respect1ve1y
These figures identify not only TgcRr and the casks and rail cars used in the
tests, but also the types of couplers and tiedowns used.

As stated earlier in Section 1, DEVELOP DYNAMIC MODEL, the simulations of
Tests 13, 16 and 18 were initially guided by comparisons of measured and cal-
culated values of the horizontal force of interaction between the cask and the
rail car. In the CARDS model, this force is defined by the equation,

DUSLF = -(ks7 + ks4) [(XRC + ZpeBRre) - (Xp - Zpep)] : (1)
where:

DUSLF = the horizontal interaction force, 1b(force),

kst and ksq = stiffnesses of the horizontal components of the rear

and front tiedowns, respect1ve1y, between the cask and
rail car, 1b(force)/1nch

XRe = the horizontal displacement of the c. g of the
cask rail car, 1nches, " :
Xp = the horﬂzontal d1sp1acement of the c.g. of the cask or
: package, 1nches, o . _
ILRC A y =;the vert1ca1 d1stance from the horizontal center11ne
~ of the cask- ra11 car to 1ts top and bottom surfaces,
~inches, . .

=3the<vert1ca14di$tance from the horizontal centerline
of the cask to its top and bottom surfaces, inches,




8 RC = the angle of the rotation of the Xrc and Ype axes
about an axis peripendicular to the Xgc - Ype
plane through the c.g. of the rail car, radians,

8p = the angle of rotation of the Xp and Yp axes about

an axis perpendicular to the Xp - Yp plane through
the c.g. of the cask or package, radians.

Initial comparisons revealed poor agreement between the calculated and meas-
ured. values of this force. Specifically, after the peak forces following the
impact pulses of Tests 13 and 16, the calculated results included some sub-
stantial negative values of this force while the measured results included
only a few small negative values.

Of the three tests, Test 16 was the most similar to Test 3, a test simulated
successfully earlier in the study (see Reference 1). The horizontal inter-
action force calculated for Test 3 did not show this tendency to negative
values, so it was concluded that reasons for the differences in the results
might be found by examining the differences in the cask-rail car systems used
in these two tests. The primary differences between the cask-rail car systems
of Test 3 and Test 16 are (see Figures 1, 2 and 5 and Table 1):

1) A 70-ton SCL flat, bulkhead rail car was used in Test 3. In Test 16
the 80-ton Union Carbide rail car was used. Both of these tests
were conducted with standard couplers.

2) In Test 3, the c.g. of the cask was located 49.0 inches forward of
the c.g. of the rail car. In Test 16, the c.g. of the cask was
located 18.25 inches aft of the c.g. of the rail car (see Figures 2
and 5).

3) Bolted tiedowns were used for vertical restraint in Test 3. In
Test 16, cable tiedowns were used.

The major difference between the cars used was in the car weights. The
average weight of the loaded 80-ton Union Carbide car (designated as OR0X805),
based on weights measured prior to Tests 6 through 9 and Tests 12 through 16,
is 160,105 1b. Only the 40-ton cask was used with this car, so subtracting
the weight of this cask gives a car weight (which includes the cask cradle) of
about 80,105 1b. The 70-ton SCL rail car used in Tests 1 through 5 and in
Tests 10 and 11 was designated as ACL78498. The loaded weight of this car,
measured prior to Tests 10 and 11, was 222,920 1b. Subtracting the weight of
the 70-ton cask gives a car weight of about 82,920 1b. This means that the
rail car used in Test 16 was about 3.4 percent lighter than the rail car used
in Test 3. A lighter car would decelerate faster, resuiting in less horizontal
displacement of the car, i.e., Xgc in Equation (1) would be smaller. This
would produce a greater tendency toward negative values of the horizontal




interaction force; however, it was felt that the difference in the car weights
was too small to account for the large negative values obtained from the model.

Tne location of the cask along the length of the rail car has little effect on
the horizontal force of interaction. This is evident from the results of the
parametric and sensitivity analysis reported in Reference 4. In Figures 91
and 92 of Reference 4, the horizontal distance between the vertical center-
lines of the cask and rail car, lgcg, is listed in the eighth and tenth posi-
tions, respectively, of ten parameters ranked according to their influence on
the horizontal tiedown force. The only parameters ranked below lgcr (that

is, in positions indicating less influence) are the stiffness coefficients

of the vertical components of the tiedowns, and two composite parameters
representing variations of these coefficients.

The remaining difference between the cask-rail car systems of Tests 3 and 16
that might account for the differences in the calculated values of the hori-
zontal interaction force is in the type of tiedowns used. The effect of the
type of tiedowns used on the horizontal interaction force is primarily due to
the stiffness coefficients of the horizontal components of the tiedowns [see
Equation (1)]. It was reasoned that, because cables instead of bolts were
used for vertical restraint in Test 16, the cask (and its cradle) apparently
tended to shift longitudinally during impact and did not return to its origi-
nal position. This was because the restoring "spring" action or "chocking"
effect of the vertically oriented bolts was missing. Instead, energy was dis-
sipated during the shifting of the cask.

The equations in the CARDS model that define the stiffness coefficients of the
horizontal components of the tiedowns were modified to account for this loss

of energy due to shifting of the cask. Previously, these stiffness coef-
ficients were computed in a calculation sequence that set the coefficients
either to their high or low values, or to the sum of their high and low values,
depending upon conditions related to the movement of the cask (and its cradle).
This procedure was retained, but the values computed were modified as follows.
Let the unmodified values be expressed as

kgy = [ks](]ow), kS](high)] (2)

and

kgqg = f4 [ksq(]ow), ‘k54(h1'gh)] (3)

These coefficients were modified using the expressions

dX
kS](new) = ks](o]d) [1 + MkS]Sgn<——§—ER—C->j, (4)




and

dX
- RPRC
ks4(new) = ks4(o1d) [1 + MkS4Sgn <——a{——>] (5)
where:
dXRPRC = the relative velocity of the cask-rail car combination,
It inches/second
dt dt °
dXP
I = the velocity of the cask, inches/second,
dXRC
-t the velocity of the rail car, inches/second,

Mcsts Mksq = Energy dissipation factors for kg7 and kggq, respectively,

Sgn(A) = the sign function

+ 1, A> 0

dX
_ RPRC
-1, A=0 where A = —t

-1, A<Q

The values of the energy dissipation factors used depend upon the conditions
encountered and imposed, i.e.,

10




XppRC
Ms1 = Mosqr [1f gt < 0 and cable tiedowns used]- (6)
M¢sy = O [otherwise]
Similarily,
dXRPRC
Mesa = Mesar if —3—< 0 and cable tiedowns used} (7)
Mcsq = 0 [otherwise]

McsiF and Mgsap are arbitrary factors currently set at 0.5.

The above representation of the stiffness coefficients in CARDS produced a
good comparison of the calculated and measured values of the horizontal force
of interaction between the cask and rail car of Test 16 (see Figure 7), and
reasonable agreement in comparisons of four additional response variables (see
Figures 8, 9, 10 and 11).

When the above equations and factors were used, without change, to determine
the stiffness coefficients kg and kgq for Tests 13 and 18, improvements

in the comparisons of the calculated and measured results for these tests were
also realized (see Figures 14 through 25).

The stiffness coefficients defined by Equations (4) and (5) generate
hysteresis-type curves. Figure 12 is a load-deflection curve generated for

the horizontal component of the tiedown at the far end during the simulation
of Test 16, and Figure 13 is the corresponding plot of the stiffness coeffi-
cient kg1 as a function of the relative displacement Xp-Xge.

Figure 8 shows three plots of the horizontal acceleration of the rail car
during Test 16. The solid line is a plot of the calculated acceleration, the
dashed line is a plot of the measured acceleration, and the dash-dot line is a
plot of the calculated acceleration of the rail car with no cask. The calcu-
lated and measured values of the acceleration of the loaded rail car show poor
agreement. During the peak pulse, the calculated acceleration is only about
one-fourth the measured acceleration. -The peak acceleration of the unloaded
rail car is about one-half that of the measured acceleration during the same
time period. :There. is strong evidence that -suggests that the measured values
of the acceleration may be ‘in error: ~ In Figure 3 of Reference 5, values of
the horizontal acceleration of the loaded rail car, measured during Test 3,
were compared with calculated values for both the loaded and unloaded rail car
(an unloaded rail car is defined as one without both the cask and the trucks).
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The purpose of this earlier comparison of results was to show that the hori-
zontal motion of the cask strongly influences the horizontal motion of the
rail car. These earlier comparisons showed that the calculated and measured
results for the "loaded" system compare very well, and that the deceleration
of the "isolated" or "unloaded" rail car is substantially greater. It was
also shown that the deceleration of the unloaded car follows the coupler force
curve. MWhen the results in Fiqgure 8 are compared with those of Figure 3 in
Reference 5, the following facts may be noted:

1)  The measured and calculated accelerations in Reference 5 are in very
close agreement;

2) Tnhe peak calculated accelerations of both the loaded and unloaded
rail cars in Figure 8 are consistent with those in Reference 5;

3) The calculated accelerations of the unloaded rail car, in Figure 8
and in Reference 5, follow the respective coupler force curves for
Tests 16 and 3; and

4) The coupler force curves for Test 3 (see Figure 8 in Reference 1)
and for Test 16 (see Figure 6) are not identical, but they are very
similar and their peak values are in the neighborhood of 1.1 x 106
pounds force.

In addition to these facts, further evidence is suggested by the comparison of
the measured and calculated values of the horizontal acceleration of the cask
in Figure 9. This figure shows that very good agreement between the measured
and calculated values was realized. It seems doubtful that such good agree-
ment could be obtained for the horizontal acceleration of the cask while the
measured and calculated values of the horizontal acceleration of the rail car
show such poor agreement. It was shown earlier, in Reference 5, that the
horizontal motion of the cask strongly influences the horizontal motion of the
rail car.

Measured and calculated values of the vertical acceleration of the cask at the
far end are compared in Figure 10. Only fair agreement was realized since the
peak values of the calculated acceleration are about 50 or 60 percent greater
than the measured accelerations, and the frequency is lower. However, the
calculated results ‘appear to be consistent with the corresponding results for
Test 3 (see Figure 12 of Reference 1), while the measured results are about a
factor of 2 less than those obtained from Test 3. The press of time ruled out
an in-depth analysis of these differences that might have led to their verifi-
cation or to some justification for modifications to the model that would have
produced better agreement.

Figure 11 compares measured and calculated values of the vertical acceleration

of the cask at the struck end. Here again, only fair agreement was realized.
Comparisons with Test 3 results, in this case, do not show any resemblance or
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consistency. In fact, it appears that there is better agreement between the
measured and calculated values for Test 16 than between corresponding values
from Test 16 and Test 3. For example, the freguencies of both the measured
and calculated values of Test 16 are higher than those of Test 3, and are
consistent with one another. However, the frequency of the calculated results
is higher than that of the measured results.

Although time did not permit an in-depth analysis to find a reason for the
differences in the vertical accelerations of the cask obtained for the
cask-rail car systems used in Tests 3 and 16, it should be pointed out again
that one of the three primary differences between the cask-rail car systems
used in these tests is the parameter lgcr, the horizontal distance between

the vertical centerlines of the cask ang rail car. In Test 3, the c.g. of the
cask was located 49.0 inches forward of the c.g. of the rail car whereas, in
Test 16, the c.g. of the cask was located 18.25 inches aft of the c.g. of the
rail car (see Figures 2 and 5). It is not certain what effect this has on the
vertical accelerations, however, the results of the parametric and sensitivity
analysis show that both the maximum absolute relative vertical acceleration of
an equivalent single-degree-of-freedom model of the cask-rail car system of
Test 3 and the maximum vertical acceleration of its support are highly sensi-
tive to lgcr (see Table 7-and Figures 86 and 89 of Reference 4).

It was stated earlier that when Equations (2) through (9) and the arbitrary
factors Mys1F and Mgsaf were used, without change, to determine the stiff-

ness coefficients kg1 and kgq for the cask-rail car systems used in Tests

13 and 18, improvements in the comparisons of the calculated and measured
results for these tests were also realized. For these tests time did not
permit further analysis beyond this stage; consequently, comparisons of meas-
ured and calculated values of response variables for these tests are presented,
as developed, in Figures 15 through 25. Figures 15 through 25 show that, even
though no further work was done, the calculated and measured results for these
tests are in reasonable agreement.

Calculated and measured response variables for Test 3 have been compared in
Reference 1, for Tests 10 and 11 in Reference 2, and for Tests 13, 16 and 18
in the present report. On the basis of these comparisons, it is concluded
that the CARDS model is an acceptable tool for the prediction of the dynamic
response of a cask-rail car system impacting a stationary train of cars at
speeds up to 11 mph.

4,  COLLECT PARAMETER DATA

This task has been completed.

5.  PARAMETRIC AND SENSITIVITY ANALYSIS

This task has been completed.

6.  INTERIM REPORT

No interim reports were published during this period.
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Test Rail
No. Date Car
PY /8 111
P2 o/8 111
P3  6/8 111
1 7/14 1
2 7/18 1
37719 1
4 7719 1
5 7/20 1
6 7/26 111
7 7/26 111
8 7726 111
9 7/26 111
10 7727 1
1 7/27 1
12 7/31 111
13 8N 111
14 8/1 111
15 8/ 111
16 8/2 111
7 8/3 11
18 8/5 11

TABLE 1

SUMMARY OF CONFIGURATIONS AND CONDITIONS
OF COMPLETED CASK-RAIL CAR COUPLING TESTS

Impact Stop
Cask Wt Speed Freguency
Coupler (tons) {mph) fn Tiedown Remarks
Preliminary Test Had No Instrumentation
Std 42.5 5.5 - - - Concrete Simulation
Std 42.5 7.6 - - - Welded Steel Stop
- Cable Rigging to Restrain in Weight
Std 42.5 11.8 - - - No Structural Damage
Std 40 8.3 Hi A Instrumented Coupler Faulty
Std 40 9.0 Hi A* Instrumented Coupler Faulty
Std 40 10.5 Hi A Instrumented Coupler Faulty
Std 40 10.7 Low B
Std 40 10.5 Hi D Cable Load Instruments Faulty
EQC 40 2.8 - C No Photography ~ No Data on Tape
EOC 40 5.6 - C No Photography - No Data on Tape
£0C 40 9.2 - ¢ No Photography - No Data on Tape
EOC 40 9.2 - C No Photography - No Data on Tape
Std 70 8.0 - A One High Speed Camera Only
Std 70 1.2 - A One High Speed Camera Only
EQC 40 11.2 - D Data Questionable
£0C 40 1.2 - D Report of Test 12
Std 40 5.4 - C
Std 40 6.5 - C
Std 40 10.8 - D Some Cables Loose After Test
Cushion 40 5.9 - D
Cushion 40 10.7 - D

*Support Underbeam Reinforced (i.e., stiffened).

Key
Railcars:

Tiedowns:

I
I
Il
A -

oo w

70 ton SCL - Std Couplers
70 ton SCL - Cushion Underframe
80 ton Union Carbide - Mixed Couplers
¢ load cells between stop and cask bumper heams
2 load bolts reproducibly snug
Same as A, except f,, lowered with bumper beams
Ten 1-in. cables at same angle - No stop
Vertical Tiedown with six cables - two instrumented
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