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AN ASSESSMENT OF STRESS~STRAIN DATA SUITABLE PFOR
FINITE-ELEMENT ELASTIC-PLASTIC ANALYSIS OF SHIPPING CONTAINERS

Introduction

Recent progress in finite-element elastic-plastic analysis
has broughtwith it a requirement for a more detailed description
of a material's response to imposed mechanical and thermal load-
ings. Unfortunately, metallurgists have in the past typically
reported the influence of such variables as temperature and strain
rate only on selected properties (e.g., yield strength or tensile
elongation) rather than the generalized elastic-plastic repre-
sentation required for modern computer program applications.

) Notwithstanding this shortcoming, a body of literature
exists that can form the basis for advanced comp: ter-aided design.
The purpose of this report is to assess and compile available
data, particularly those relevant to materials which are being
used for light water reactor (LWR) spent fuel shipping container
primuy_ structures. Consequently, this assessment has been
limited to selected stainless steels, uranium, and chemical
lead. It includes, where possible, data on the stress-strain
behavior of these materials over a range of strain rates (1075
to 102 sec™!) and temperatures (-40 to 320°C; -40°F to 620°F)
thought to be typical of shipping cask environments.

This survey has considered only uniaxial defo;nation, ten~
&ile or compressive, and does not contain any multiaxial infor-
mation. In addition, fracture, creep, and cyclic loading condi-

tions have been excluded. Since the data sources examined in
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this study generally did not cite whether the values given were
average or minimum data reported are thought to be typical of the
materials being examined rather than representing either average
or minimum values. '

This report first lists the materials used in typical ship-

ping cask designs and their procurement specifications. It then

discusses the available mechanical properties data, particularly
stress-strain curves, treating each of the specific materials

in separate subsections. Finally, the report recommends specific

. areas for further research and data acquisition.

Materials

Table I lists the chemical compositions of some of the
materials presently used for LWR shipping casks. TableII lists
the specific cask being considered and the material specification
required for procurement of the requisite structural shapes.

Mechanical Properties

Austenitic Stainless Steels

Many investigators have examined austenitic stainless
steels, because of their excellent corrosion resistance, creep
resistance, and high toughness. However, their studies have
tended to neglect the ‘regime of stress/strain-rate/temperature
of interest for shipping cask applications.

Probably the most extensive compilation of stress-strain

data may be found in studies conducted at the Oak Ridge National

Cosk ¥

itiea of LV Sulppi N
ght; meximes smount waless othervise moted)

Chenical C

(percentage by

wel,

e .M W other
1
2.0
3.0
0.7- 1.0 04 ~0.6

0.03/0,08 v;0,002/

4,0-10,5

0.4 = 0,63

17,5 <220 %0~ 7,0

18,0 ~20,0
16,0 -18,0

18,0 ~21.0
17.0 ~19.0

17,0 =190

19,0 -21.0

0,45 0,03 8,0 20,0
0.15-0,35 0,035 0,06

0.045 0.03

0,043 0,03

P A

-t
7.3 =9,0
0
0
(]
0
]
(]
0
0.4- 1,06

0.6~ 1.0

.08
o.08

.03

08

08
0.08

.08
[ X ]
0.1 -0,2

0,008 3;0.15/0,5 Cu

2 . -
@ i
338 834 SE%
1y !lll§§'3| Esg -lui?gé
£t “
RRTERERRRS & % z:l 8,33,
$&dd 2 s ee
Yy ””'::i_!g_ég;* 'ééé”
1132 9 28
traaa 0l:|ééé52§4 g:‘!o..
33213 ug.a?.ﬁﬁ't. " 4 28321
3980 B900s ., 4 ;0.
32333 aAAaaaay : 2e
13311 IZIELIYT 4 Sery'
38388 R49%Reqql 2
W T el
2333 @ 3
218 asa-«:ﬁﬁg.q ‘l silsal
g
H e % on £
Snrneadpnes_ %;ig vennd
F 0§ Iy éniii




Laboratory and the Hanford Engineering Development Laboratory.
Since these examinations were in support of the LMFBR program,
. they have been principally concerned with temperatures above

.
§ »those of concern to this Program. Table -III summariszes the
% 2: _.:: % j 8 applicable data banks pPresently available from these institu-
i [ _!: ;‘:3 5. 9 . I-l- 5:' & tions. These investigators have shown that while the yield
:I" 3 52 _i:i'i! i’iig.: _i g Ei‘: § P g strength of 304 stainless steel at 25°C (77°F) increases by
g é Eig féizii.fjffg ;‘ 5;; §§§ Eéxiggfé :-; 48 Hn/nz per decade increase in strain rate, the overall stress-
§ * 288 fopidaiiiede 23,8 raszazes ﬂ' strain behavior of the alloy does not appear to be radically
; % :ﬂ:_ g: < . ::.' altered by these rate charges.
f i . gi é- 2 ';';:,3' ?g.f The stress-strain curves shown in Figures 1 through 6 and
o g . 35. §§| §§§I il 8 §§§.§.EE. §.§§§§§§ g; Table IVshould be considered only as typical of the respective
; ; - 3. - §~ alloys and product forms. Studies [3] of different product
;:‘ . § 5_ ; 5 §1 forms produced from a single heat of 304 stainless steel have
i % oY g_zi:‘ g '5‘_ S .3'. demonstrated that even when chemistry variables are eliminated,
i iﬁ'ifgé 5135%%3;333: 3 §§§§=,1'. §§§§§§g§ '_ui variations in processing operations can cause large changes in
i % g the stress-strain response. This effect of processing varia-
5 ; " b tions is further complicated by the rather wide chemistry auwf
; “f S 15 ables shown in Table I. Combinations of these factors--different
ti : ; : chemistry and processing--have led to considerable property
-l : s ; :;'! variability for nominally identical alloys. Examples of this
: heat~-to-heat variability are given in Pigures 7 and 8 for 304
;. ’ ' and 316 stainless steels, respectively.

Two additional phenomena, (i.e., the formation of deforma-
tion induced martensite and dynamic strain-aging) have been
observed during tensile straining of austenitic stainless ateels.

The former can result in drastic changes in the stress-strain

B odee,-
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‘TABLE IV

Tensile Properties oflhpmentltive Stainless Steel Alloys

Test Tewperature °C =~ =50 =20 0 20 100 200 300 400
Tensile Strength 159.7 141,6 1274 89.6 68,8 63,4 63.2 63.2
ksi
Stress kei @
Type 0.02X Strain 2.6 28,0 28.7 28.2 19.7 15.2 14,3 12.8
304 0,05 Strain 28,7 31.4 31.8 30.0 21,5 17.9 16.6 15.5
0.1 X Strain 33.8 33,2 33,6 31.4 22,8 19.0 17.7 16.6
0.2 T Strain 36,3 34.9 35.2 32,7 24.2 20.2 18.8 17.5
Elongation (X) *56,1 55,9 64,7 70,8 58,5 49.1 44,7 &5.5
Reduction of Area () 71,0 67.0 75.0 77.4 78.5 75.2 69.6 72.0
Tensile Strength 120,7 104.8 98.6 84,7 72.1 66.8 67.2 67.6
ksi ’
Stress kei @
0.02% Strain 37.2 33.6 30.2 28,7 22.0 18.6 17.5 16.1
Type 0,05Z Strain 42,3 37,6 33.8 30.9 24.0 19.9 18,4 17.0
316 0.1 X Strain 45.2 399 36,7 32,3 25.5 20.8 19.0 17.7
0.2 X Strain 48,8 41,7 37.9 34,0 26,7 22.0 20.2 18.8
Elongation (X) 84,0 87.3 80.1 60.7 5.1 48.2 45.5 45.6
Reduction of Area (2) 740 74.0 62,0 77.4 76.3 75,2 68.4 69.6
Tensile Strength 147.6 127.7 110.4 85.8 71.5 63.8 60.9 62.9
kai *®
Stress ksi @
0.0 Strain 22,8 27,6 3.0 22,8 18.8 19.0 15.7 14.1
0.05Z Strain 26,7 30.9 39.4 25,5 23.3 20.8 17.7 16.6
321 0.1 2 Strain 30,0 33.2 40,5 27,3 2%5.1 22,2 19.3 17.7
0.2 X Strain 34.5 36.1 41,0 29.3 26.7 23.5 20.4 20.2
Elongation (2) 47.6 53.5 64,2 63.8 53.7 45.0 39.7 39.4
Reduction of Area (X) 70,0 71.7 75.0 7..4 8.6 72,0 72.0 67.2
‘!cnnile Strength 145.6 127,2 111.6 94,3 75.5 66.5 64.1 64.5
ks
Stress ksl @
0,02 Strain 29.3 30,7 29.8 29.8 23.1 19.3 179 17.5
0.05X Strain 34,9 35.8 32,9 31.4 25.8 23.3 20.2 19.3
347 0.1 X Strain 39.4 39,2 37.9 33,2 27.8 25.3 22,k 20.4%
0,2 2 Strain 44,8 42,8 40,1 35.2 29.3 27,1 23,7 22.0
0.5 T Strain 48,8 45.2 41,0 35.8 -~ - - -
1.0 X Strain 52.4 50,2 43,7 38.8 -~ - - -
Elongation (X) 49.5 56,2 65.2 54.6 48,0 4l.1 41.3 39,3
Reduction of Area (%) 69.6 64,0 75,0 72.0 65.8 72.0 70.0 67.2
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behavior. Pigure 9 shows a representative example of the effect

of test temperature on the mech

ical resp of 301, an alloy

less stable (i.e., more Prone to martensite formation) than 304.

Normally, stable austenitic stainless steels show an increase

in yield and ultimate strengths with decreasing temperatures

below ambient [2]. On the other hand, martensite-forming grades

exhibit a slight decrease in Yield but a rapid increase in

ultimate strength. a sharp maxima in the tensile ductility

also occurs (Figures 10 and 11}. Although austenitic stainless

steels (such as 304) which are used for LWR
typically thought to be

shipping casks are

quite stable with respect to martensite

formation, it is possible this transformation might oceur in

containers stressed at low temperatures. Unfortunately, the

8885
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o TEST TEMPERATURE. °C)

Figure 10. Tensile properties of standard grades

of austenitic steel in temperature
range -200 to +800°C [2).
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Pigure 11. Effect of alloy stability on tensile

properties of austenitic 8steels [2].

importance of this phenomenon cannot be quantitatively assessed
at this time.

Dynamic strain-aging, the second phenomenon ‘auuded to
above, is usually associated with a change in the strain rate
sensitivity (i.e., from an increase in flow stress with increas-
ing strain rate to a decrease). Many consider strain-aging to
be limited tobcc metals. There is evidence, however, that aus-
tenitic stainless steels may also exhibit dynamic strain-aging
(serrations in the Stress/strain curve) particularly in the
temperature range 200 to 700°C {6]. The cross-hatched area in

Figure 12 indicates the temperature and strain-rate regime within

TEMPERATURE, °C)
o2 —T0 500 30 20 1
. IVeE_ 3% ]
@ IMPURE
2 I:IHZ-HJRIFED.
R -
L i
W
-4l —
E 10
n EN ONSET
5 Wi
0 o FX) 0
0,

12. Relationship between strain rate and
Flgure temperature for serrated flow in type
330 stainless steel [6].
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which serrated flow is encountered in an AISI 330 stainless
steel (Fe-15Cr-35Ni). 1In a more limited investigation {7],
serrations have been reported in a type 316 stainless steel
tested at 200°C utilizing a strain rate of 1.3 x 10"2gec~1.
These conditions correspond with those predicted from the diagram
for type 330 stainless steel.

The effect of strain-aging may also be important in weld
regions. Current practice involves preparation of weldments with
a small percentage (< 10 percent) of body;centered cubic (bee)
ferrite. This raises the possibility that not onljnight dynamic
strain-aging take place in the face-centered cubic (fcc) parent
(base) metal but also in the partially bec weld region, perhaps
under different conditons of temperature and strain-rate.

Finally, it should be recognized that it is virtually impos-
sible to gather enough data to describe every conceivable combi-
nation of strain-rate and temperature. For this reason, proce-
dures for interpolation and extrapolation between a more reason-
able number of data points are required. Indeed, the ideal
situation would be to obtain an accurate "equation of state"
which might allow one to dispense with or minimize the require-
ments for a data bank. Some Progress has been made toward this
goal [8-11). These attempts involve parameterization of the
stress/strain curves with the aim of reporting the influences
of strain-rate, temperature, and material history o1 these
characteristic functions. Some proposed equations .are shown in
Table V. However, these representations all suffer from a number

of common difficulties. For example, none can predict the strain

TABLE V

'.l‘ybtcul Parametric resentati oposed
for Anltenlti?‘s’ninhn g::-i:

—Equation : Beference
n
¢ = Kj€ " + exp K, exp nye {12}

Kys 0y, K3, ny are constants

0 = (05 - 0, Jexp(=e/cy) + 0, (13}

Jo¢ 0, 1€, are constants

CPe ’
v - op=T3ret e 14

C, 8, P are constants

1/m
P 7-0p
‘L*® X

[14)

K, m are constants

See Appendix C for the definition of all other symbols.
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at fracture. Furthermore, phenomena such as strain-aging or

martensite formation are not presently amenable to analysis.

Uranium

The choice of uranium or dilute uranium alloysfor nuclear
shielding applications is principally predicated on their high
density (18.9gm/cln3) and atomic number. Some authors [15] suggest
that these materials may be considered structurally equivalent
to mild steel. However, this assumption is generally unfounded
and is extremely misleading.

Pure uranium undergoes three phase changes between -40°C and
its melting point. Bétween ~40 and 633°C, the temperature region
of primary interest in this examination, its crystal structure is
orthorhombic. Between 663 and 700°C it has a complex tetragonal
gtructurc. and above 770°C it undergoes a transition to body
r~ntered cubic. )

1he orthorhombic crystal structure of the :lpha {or low
temperature) phase suggests that the nechanical and physical

properties of uranium will be highly anisotropic. For example,

Appendix A shows that the thermal expansion behavior of single )

crystal a-uranium, may vary by a factor of S, depending upon
the particular crystallographic direction being ponaideted.
Pnctically', this large an_isot:ppy in chermal expansion results
in some grains being stressed beyond yield upon' cooliné. Sub-
seqguent application of a load will then result in plastic flow

at vanishingly small stresses [16,17].

Another complication which ar ises because of the anisotropic
nature of a~uranium is that both its elastic and plastic proper-
ties (e.g., strain hardening behavior) are dependent upon prior
processing history. Highly textured material, where nearly all
of the elastically "strong" directions are aligned, shows a
twvofold difference in elastic modulus between the "strong® and
"weak" directions (see Appendix B). Few previous investigators
have measured or even considered this textural effect whendis-
cussing the plastic deformation of uranium. - This fact makes
direct comparisons between varjious studlel‘difﬂcult and may
explain some of the scatter observed.

The mechanical properties of depleted a-uraﬂlu- are also
quite sensitive to temperature (Figure 13). Decreasing the test
temperature from 663°C results in an increase in tensile vield
and ultimate strength. This increase is accompanied {to approxi-
mately 350°C) by a decrease in tensile ductility. Between 350
and 25°C the ductility appears to be essentially independent
of temperature, or may exhibit a slight minima. Pinally, below
25°C the ductility decreases sharply (i.e., a-uranjum undergoes
a ductile-brittle transition at about 25°C). These ductility
changes have been associated with fracture transitions from
ductile failure, involving inclusions [18,19], to mixed ductile
plus intergranular failure and, finally, to twin-matrix [19)
cleavage failure at the lowest test temperature.

The ranges over which the differing temperature-ductility
relationships are observed can be altered in addition by changing

test conditions, a-uranium microstructure, chemistry, etc. The
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ductile-brittle transition temperature has been found to increase
with increasing strain rate {21,22], grain size {17,18), grain
shape irregularity [23,24], internal hydrogen content {22, 25-
29], ironand aluminum content [24], residual stress level [30],
humidity [31-33), and decreasing amounts of prior strain (17,34,
35). The effect of one of these variables, grain size, on the
transition temperature is shown in Figure 14, A quantitative
assessment of the other variables awaits more detailed experi-

mental studies.
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Pigure 14, lv)':sgi:e/lbo?tt%e tr:nlit ion telgf”tun
v - 300 pp,?c,g'é'o“pgi‘ﬁf‘éa ) gff
and 50 ppm Fe [3].

In a gimilar fashion, the ductility above the ductile-
brittle transition region may be decreased by decreasing purity
[36] and increasing residual stress [36,37). Differences in
residual stress level may also affect the strain hardening be-
havior of a-uranium. FPigure 15(a) shows a family of serrated
load-elongation curves of a~uranium in which the samples have
had & high residual stress level induced in them by quenching
from elevated temperature. If the same material had been furnace
cooled, serrated yielding behavior would not have been observed
(Pigure 15(b)). The residual stress levels asaocfated with
these two heat treatment procedures were not reported so that

our understanding of the influence of residual stress on the
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tensile ductility in the temperature region 50 to 350°C remains
qualitative. The same situation exists with regard to the
impurity effectz since N0 quantitative examination has been
reported.

Pinally, Bigﬁres 16 and 17 represent a summary of the pre-
Sently available stresa-strain curves for a-uranium. It should
be recognized that neither of these series is for as-cast a-
uranium; to dat;e attempts to locate same have been unsuccessful.
Notwithstanding this, it appears that the changes in strain
hardening behavior that would be anticipated by increasing strain
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rate appear quite small and that the changes in flow stress band
strain hardening behavior with changing temperature appear to
be of paramount importance.

These results all suggest that depleted a-uranium should
not at present be considered as a primary structural member
since it undergoes a sharp loss in ductility with decreasing
temparature. However, there is some evidence which suggests
that appropriately heat treated uranium alloys (e.g., U-2 wts
Mo) may have aductile-brittle transition temperature well below

that of a-uranium {compare Figures 13 and 18).

Lead

A review of those physical, chemical, and mechanical charac~
teristics of lead which have resulted in its widespread use for
nuclear shielding has been given by Btukenbroeker et al, [40).
Paramount among these is lead's high density (P2g3x = 11.35 gw/
cm3), low cost, and relative ease of fabrication. Although the
Present examination is limited to "chemical® lead, various other
lead purities and alloys may be selected for nuclear applications.

The terminology “"chemical® lead is generally restricted to
material as specified by ASTM B29-55. Table I shows the standard
chemical specification for this grade of pig lead, silver and
copper being the principal impurities.
Pb-Ag and Pb=Cu binary phase diagrams (Figure 19) suggests that
while the Ag impurity concentration lies within the expected
range of solid solubility, the presence of 0.04 to 0.08 weight

percent copper will result in the formation of a two-phage

Consideration of the
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(Cu+15b) alloy. It is, therefore, not surprising that this
small amount of copper has been reported to have a noticeable
effect on the mechanical properties of lead.

Although there have been a number of examinations of the
influence of strain-rate and temperature on the mechanical be-
havior of lead [42,56], application of these data to shipping
cask environments is not straightforward. In general, the avail-
able data do not include a description of either the chemistry
or thermomechanical condition for the material being examined.
Under these circumstances probably the most complete series of
experiments that have been performed to date are those of Tietxz
[S1] (Pigure 20 through 23) and Green et al. {56] (Figures 24 and
25). The former author’s results demonstrate that the mechanical
behavior of lead is quite sensitive to chemistry. Indeed, at
low temperatures high purity (99.995 percent) lead is stronger
than lead containing 0.058 weight percent Cu, contrary to what
might be expected while at temperatures above 373 X (100°C),
the opposite trend is observed (Figure 26). It is also inter-
esting to note that the more recent results of Evans {45] (Figures
27 and 28) do not agree with those of Tietz. Presently, the
cause of this discrepancy is undefinable, since Bvans simply
reported his material as “chemical" lead without giving any
information as to the actual chemistry, grain structure, etc.

One final coument wmust be made regarding mechanical pro-
perty reproducibility at high-strain rates. Generally the
observed measurement errors are large and, more importantly,

are unpredictable. For example, the undulations observed in the
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authors' recommendations of those subjects vhich will require

further evaluation.

Mechanical Properties

1. Define the temperature, strain-rate, and strain regions for
which strain-induced martensite and dynamic strain-aging
will control the stress-strain behavior of the austenitic

stainless steels ugsed for LWR shipping casks.

2. Establish a data bage for selected austenitic stainless
steels, "chemical" lead, and as-cast a-uranium. The data

base should include:

a. The influence of strain-rate and temperature on the
tensile, compressive, and shear properties.

b. The influence of chemistry va:‘ia't.lon on the mechanical
properties.

c. The influence of residual Stress level and test environ--

ment on the mechanical behavior of as-cast a—dtanlu-.

3. Develop constitutive equations to describe the ‘streu-strain
behavior of LWR shipping cask material under both normal ana
abnormal (due to strain aging or martensitc formation) modes
‘of deformation.

Theraal Expansion (See Appendix A)

1. Establish the thermal expansion behavior of 216, 317, 321,
and 347 stainless steel over tﬁe temperature range -40 to
320°C (40 to 620°F).

2, Bstablish the thermal expansion behavior of typical Pre L.c*
forms of a-uranium used in shipping cask applications. Par:.,~
cular attention should be given to the expected anisotronic
orlentation dependence of the thermal expansivity,

Blutic Properties (See Appendix B)

1. BExtend moduli measurements for austenitic steels (304, 316,
321, 347) to the lowest operating teaperatures {~40°C)
associated with shipping casks. ‘

2. Determine elastic Properties of 216, 308, 317, and 347

stainless steel.

3. Determine elastic Properties of selected dilute uraniom
alloys (e.g., U-2Mo).

The primary emphasis of all of these stuﬁ:lu should be a
systematic and quantitative assessment including pertinent micro-
structural information rather than the largely qualitative

information available at the present tiwme.
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APPENDIX A

Thermal Expansion Behavior of Selected
Stainless Steels, Uranium, and Lead

The thermal expansion behavior of stainless steel, uranium,

and lead are presented below. The linear thermal expansion has -

been presented asAL/L, vhere (see Appendix C for definition of

symbols): ) *
AL = 1y - 1,

Stainless Steels

The thermal expansion behavior of the stainless steels pre-
sently being 'considend is tabulated in Pable A-I and summarized
in F:I.gurg A-1l, rﬁo data are quite limited; none were found for
216 or 317 stainless steels. In addition, that for 321 stainlless
is vell above the temperature range of primary interest for
shipping applications. However, Figure A-1 does suggest that
the thermal expansivity of many stainless steels is quite similar
and that, to a first approximation, they may be represented by
that of 304 stainless steel, i.e. [s71.,

AL/Lg(%) = 0.358 + 9.471 x 10™% 7 + 1.031 x 10-672
- 2.978 x 1071003 (7 in °x)

The formation of martensite at low tempera;ute or s~-ferrite in
weldments can be expected to alter this behavior in an as yet

undetermined manner.
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Thermal Linear Expansion of Stainless Steel
304 Stainless (19.19 Cr, 8.49 Ni, 0.65 Mn, 0.53 8i,
0.068 C, 0.024 P, 0.007 S, balance Fe) [58]

Temperature (K)

TADLE A-I

233
239
244
250
255
261
266
272
278
283
289
294
300
305
311
316
322
328
333
339
344
350
355
361
366
372
378
383
389
394
400

L/Lg(%) Temperature (K) L/Ly (%)
-0.089 405 0.182
-0.083 411 0.191
-0.076 416 0.199
-0.071 422 0.207
-0.058 436 0.236
-0.046 450 0,259
~0.040 464 0.281
-0.029 478 0.309
-0.024 491 0.334
-0.013 505 0.358
-0.005 519 0.383
0.002 533 0.402
0.012 547 0.429
0.028 561 0.455
0.028 575 0.484
0.037 589 0.507
0.044 603 0.536
0.055 616 : 0.563
0.063 630 0.588
0.073 644 0.614
0.083 658 0.636
0.091 672 0.667
0.100 686 0.695
0.107 700 0.724
0.118 714 0.768
0.128 741 0.809
0.134 755 0.831
0.145 . 769 0.858
0.151 783 0.887
0.161 797 0.917
0.172 810 0.945
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Figure A-1. Thermal expansion of 304 and 321
: stainless steel.
Uraniua

The thermal expansion behavior of a-uranium is quite complex
(see Table A-II and Pigure a-2). Single crystal measurements
indicate that the expansion behavior, in contrast to stainless
steel or lead, is highly anisotropic and depends upon the parti-~
cular crystal-lographic orientation being considered. This sug-
gests that the thermal expansion coefficients of polycrystalline
uranium will be extremely sensitive to prior processing history
and are expected tobe quite variable. To date there have “een

no investigations of the influence of ther hanical treatment

on the thermal expansivity of a-uranium so that any formalism
proposed to describe its behavior must be considered as only a

first approximation.




TABLE A-II
Thermal Linear Expansion of Polystalline a-Uranium

Curve 13 599.8 t!f 0.14 cz 0.03 Si) Curve 32 {"Pure” Urani.un%
rature (K Lo(s " Temperature (K) [

291 -0.0032 293 0.000
373 0.127 373 0.118
473 0.306 473 0.268
573 0.506 575 0.424
673 © 0.728 673 0.594
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Pigure A-2. Thermal expansion behavior of a-uranium, curve
reference numbers given by Toulonkian et al. [57].

v

Notwithatanding, Touloukian et al. [57] recommend that the

thermal expansion behavior of polycrystalline a-uranium can be
tcprcsénted by:

AL/Lo(%) = -0.379 + 1.264 x 10~37 - 8.982 x 10-8r2

+ 6.844 x 1071973 (293 x< <941 x).
(T in °x)

As noted above, the error limits to be associated with this
relationship must be established.

Lead

The thermal expansion behavior of lead is summarized in
Figure A-3. Although the bulk of this data refers to high
purity lead it appears that, in those instances where the im-
purity levels approach that of "chemical® lead, the expansion
behavior remains relatively unaffected. Indeed, it has been
Proposed that all of the tabulated values can be represented
to within + 3 percent over the temperature range 100 to 600
K by the following equation [57]:

AL/Lg(%) = 0.786 + 2572 x 10737 + 1.147 x 10”722

+ 8.770 x 1071973 (T in ex)
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with the recommended values being

Temperature (X) AL/Lo (%)

100
200
293
400
500
600

where

-0.52¢
-0.261
0.000
0.317
0.638
0.988

xpansion behavior of lead, curve
numbers given by Touloukian et

ax 10‘([‘1)
25.6
27.5
28.9
30.6
33.3
36.7

APPENDIX B

Elastic Properties of Selaected Stainless
Steels, Uranium, and Lead

Stainless Steels

Typical values for the elastic constants of selected
stainless steels are given in Tables B-I through B-VII and
Pigures B-1 through B~6. Examination of thig data indicates
that variations in chemistry within the group of austenitic
stainless steels presently under consideration have 1little
effect on their elastic properties. Furthermore, increasing
temperature generally results in a gradual decrease in the
Young's and shear moduli and an accompanying increase in
Poisson's ratio. Aga{n, martensite formation can be expected
to cause changes. For example, the presence of martensite
has been shown to lower the modulus of the parent austenite
vhase [61).
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TABLE B~II
TABLE B-I Young's Modulus for
Annealed 304 Stainless Steel [14)
Effect of Temperature on the Elastic
Constants of Selected Stainless Steels {60]
Temperature (K) : H
Type 297 422 533 644 : :
Young's Modulus (103 ksi) f :
304 29.0 27.3 26.0 24.8 :
316 28.4 27.2 26.4 25.6 :
317 27.0 26.4 25.0 - : :
321 28.9 27.3 25.8 2.5 :
347 28.9 27.5 26.1 24.8 :
Shear Modulus (103 ksi) L2 L, :
304 11.2 10.4 9.8 9.3
316 11.3 10.8 10.2 9.2
317 - - - - TABLE B-III
321 11.2 10.6 9.9 9.4 Shear Modulus for
, Annealed 304 Stainless Steel [14]
347 11.4 10.7 10.1 9.5
Poisson's Ratio ) 1971 ASME CODE
:---n-vmnlnu wirgn v. ’::l’l uu-u‘-': be 1e3» SPATER 8¢ tour M "
304 030 0.31  0.31  0.32 e i NI Vo R T
36 0.26  0.26  0.30 0.3 P FH-
LI T . e 10748 o1 Va0 80 -
¢ i . Tabind of B :
317 0.25 0.28 0.31 0.31 s mian b3 & e :
¢ Mo un . ¢ .
' P EE : :
321 0.28 0.29 0.30 0.31 i :
LB :
347 - o0.28 0.29 0.30 0.31 $ g :
o WP W7 2ON(o N :
Paim b M :
. i) o33 afeis 18,9601 0020 L H
* S IMN o 0317040 il . .
: ahn teest Citeisens E‘ E .
: piane i :
T ontahn :
: g’”‘"": .' ::.““" s“!uu ’b.;l:g?:m -
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Figure B-1. Young's modulus of 3048S, annealed [14].
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Figure B-2. Young's modulus of 31688, annealed [14).
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Figure B-3. Shear modulus of 30485, annealed [14).
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Pigure B-4. Shear modulus of 316SS, annealed [14].
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Figure B-5. Poisson's ratio of 304SS, annealed [14].
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Pigure B-6. Poisson's ratio of 31655, annealed {14} .
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Uranium

The influence of temperature on the elastic properties of

uranium are presented in Table B-VIII and Pigure B~7. The solid

curve in the latter refer= to the modu tus of random, non-textured

polycrystalline uranium [62], while the minimum and maximum

TABLE B-VIII
Probable Values for Elastic Moduli

of Non-textured Polycrystalline Uranium {64)

Young's Shear
Temperature ulus Modulus Poisson's
— 1K) 10° psi (107 psi) Ratio
200 30.5 12.50 0.22
300 29.1 11.80 0.23
400 27.6 11.20 0.23
500 26.1 10.50 0.23
600 24.3 9.70 0.25
700 22.3 8.70 0.28
800 19.7 7.60 0.30

Figure B-7.

' ulus of pure polycrystalline uranium as
zou!':?nc.ti-;ld of te-g:tats:e. The modulus of non-
textured uranium is given by the solid line. The
maximumand minimum moduli for alpha uranium from
single crystal measurements are also plotted [62,

63].



values were obtained from specifically oriented uranium single
crystals [63]). These results show that, whereas the modulus of
non-textured polycrystalline uranium at 298 K is 29 x 10% psi,
it canbe as high as 41.5 x 106 psi or as low as 21.4 x 10% psi
for a textured sample,

Pinally, the authors were unable to obtain any reliable

data on the influence of dilute alloy additions (e.g., 2 weight .

percent Mo} on the elastic properties of uranium.
Lead

The influence of temperature on the Young's modulus of cast

‘ high purity lead is shown in Figure B-8. Again, increasing

temperature results in a gradual decrease in modulus. Attempts
to locate more complete information, including values of the
shear modulus and Poisson's ratio, have been unsuccessful to

date. .
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Figure B-8. Young's modulus of lead [65).
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APPENDIX C
List of Symbols

true stress
proportional limit

true plastic strain = 1n{l+e)
engineering strain = Al/l,
total t.:ue strain

Young's modulus

thermal linear expansion,

= length at telporatu.t-'e T

= length at 293 K

= Lp - Ly
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