

U.S. Department of Transportation

COMPETENT AUTHORITY CERTIFICATION FOR A TYPE B(U)F FISSILE

RADIOACTIVE MATERIALS PACKAGE DESIGN CERTIFICATE USA/0847/B(U)F, REVISION 0

Pipeline and Hazardous Materials Safety Administration

REVALIDATION OF JAPANESE COMPETENT AUTHORITY CERTIFICATE J/2043/B(U) F

The Competent Authority of the United States certifies that the radioactive material package design described in this certificate satisfies the regulatory requirements for a Type B(U)F package as prescribed in the regulations of the International Atomic Energy Agency¹ and the United States of America² The package design is approved for use within the United States for import and export shipments made in accordance with applicable international and domestic transport regulations.

- 1. Package Identification JRF-90Y-950K.
- 2. Package Description and Authorized Radioactive Contents as described in Japanese Certificate of Competent Authority J/2043/B(U)F dated July 29, 2022 (attached).
- 3. <u>Criticality</u> The minimum criticality safety index is 0.0. The maximum number of packages per conveyance is determined in accordance with Table 11 of the IAEA regulations cited in this certificate.

4. General Conditions -

a. Each user of this certificate must have in his possession a copy of this certificate and all documents necessary to properly prepare the package for transportation. The user shall prepare the package for shipment in accordance with the documentation and applicable regulations.

b. Each user of this certificate, other than the original petitioner, shall register his identity in writing to the Office of Engineering and Research, (PHH-23), Pipeline and Hazardous

¹ "Regulations for the Safe Transport of Radioactive Material, 2018 Edition, No. SSR-6" published by the International Atomic Energy Agency (IAEA), Vienna, Austria.

² Title 49, Code of Federal Regulations, Parts 100-199, United States of America.

CERTIFICATE USA/0847/B(U)F, REVISION 0

Materials Safety Administration, U.S. Department of Transportation, Washington D.C. 20590-0001.

- c. This certificate does not relieve any consignor or carrier from compliance with any requirement of the Government of any country through or into which the package is to be transported.
- d. Records of Management System activities required by Paragraph 306 of the IAEA regulations¹ shall be maintained and made available to the authorized officials for at least three years after the last shipment authorized by this certificate. Consignors in the United States exporting shipments under this certificate shall satisfy the applicable requirements of Subpart H of 10 CFR 71.
- 5. Marking and Labeling The package shall bear the marking USA/0847/B(U)F in addition to other required markings and labeling.
- 6. Expiration Date This certificate expires on May 22, 2028.

This certificate is issued in accordance with paragraph(s) 810 and 816 of the IAEA Regulations and Section 173.472 and 173.473 of Title 49 of the Code of Federal Regulations, in response to the December 21, 2022 petition by Edlow International Company, Washington, DC, and in consideration of other information on file in this Office.

Certified By:

William Schoonover

William Schoonover
Associate Administrator for Hazardous
Materials Safety

June 27, 2023 (DATE)

Revision 0 - Issued to revalidate Japanese certificate J/2043/B(U)F dated July 29, 2022. This package is approved as meeting the requirements of the 2018 Edition of the IAEA regulations.

原規規発第 2207293 号 令和 4 年 7 月 29 日

国立研究開発法人日本原子力研究開発機構 理事長 小口 正範 殿

核燃料輸送物設計承認英文証明書について

核燃料物質等の工場又は事業所の外における運搬に係る核燃料輸送物設計承認及び容器 承認等に関する申請手続ガイド(令和2年2月26日付け原規規発第2002264号)2.4.に基 づき、令和4年7月19日付け令04原機(環材)019をもって申請のあった標記の件につい て、添付のとおり証明します。

IDENTIFICATION MARK J/2043/B(U)F

$\begin{array}{c} \text{COMPETENT AUTHORITY} \\ \text{OF} \\ \text{JAPAN} \end{array}$

CERTIFICATE FOR APPROVAL OF PACKAGE DESIGN FOR THE TRANSPORT OF RADIOACTIVE MATERIALS

ISSUED BY

NUCLEAR REGULATION AUTHORITY 1-9-9, ROPPONGI MINATO-KU TOKYO, JAPAN

CERTIFICATE FOR APPROVAL OF PACKAGE DESIGN FOR THE TRANSPORT OF RADIOACTIVE MATERIALS

This is to certify, in response to the application by Japan Atomic Energy Agency, that the package design described herein complies with the design requirements for a package containing Uranium Silicon Aluminum Dispersion Alloy, Uranium Aluminum Alloy and Uranium Aluminum Dispersion Alloy, specified in the 2018 Edition of the Regulations for the Safe Transport of Radioactive Material (International Atomic Energy Agency, Safety Standards Series No.SSR-6) and the Japanese rules based on the Act on Regulation of Nuclear Source Material, Nuclear Fuel Material and Reactors.

This certificate does not relieve the consignor from compliance with any requirement of the government of any country through or into which the package will be transported.

COMPETENT AUTHORITY
IDENTIFICATION MARK: J/2043/B(U)F

Data

Hasegawa Kiyomitsu

Director, Division of Licensing for Nuclear Fuel Facilities

Secretariat of Nuclear Regulation Authority Competent Authority of JAPAN for Package Design Approval 1. The Competent Authority Identification Mark: J/2043/B(U)F

2. Name of Package

: JRF-90Y-950K

3. Type of Package

: Type B(U) package for fissile material

4. Specification of Package

(1) Materials of Packaging

(a) Main Body

: Stainless steel, Balsa wood and

Hard polyurethane foam

(b) Outer Lid

: Stainless steel, Balsa wood and

Hard polyurethane foam

(c) Inner Lid

: Stainless steel and Silicone rubber

(d) Fuel Basket

: Stainless steel and Silicone rubber

(2) Total Weight of Packaging

: Approximately 860 kg

(3) Outer Dimensions of Packaging

(i) Outer Diameter

: Approximately 840 mm

(ii) Length

: Approximately 1,800 mm

(4) Total Weight of Package

: 950 kg or less : See Figure-1

(5) Illustration of Package

(Bird's eye view)

5. Specification of Radioactive Contents

: See Table-1 and Table-2

6. Description of Containment System

Containment system consists of an inner shell and an inner lid (made of stainless steel). O-ring made of silicone rubber is used for the contact surface between the inner shell and the inner lid.

7. For Package Containing Fissile Materials,

(1) Restrictions on Package

(i) Restriction Number "N"

: No restriction

(ii) Array of Package

: No restriction

(iii) Criticality Safety Index (CSI)

: 0

(2) Description of Confinement System

Confinement system consists of the basket which maintains the fuel elements contained in the package.

- (3) Assumptions of Leakage of Water into Package

 It is assumed in criticality analysis that water will leak into void space of the inner shell.
- (4) Special Features in Criticality Assessment Not applicable
- 8. For Type B (M) Packages, a Statement Regarding Prescriptions of Type B (U)

 Package that do not apply to this Package

 Not applicable (This package is Type B(U))
- 9. Assumed Ambient Conditions

(i) Ambient Temperature Range

: -40°C~38°C

(ii) Insolation Data

: Table 12 of IAEA Regulation

- 10. Handling, Inspection and Maintenance
 - (1) Handling Instructions
 - (i) Package should be handled carefully in accordance with the schedule and procedures established properly taking all possible safety measures.
 - (ii) Package should be handled using appropriate lifting devices and cranes.
 - (iii) When packaging is stored outdoors, it should be covered with an appropriate waterproof sheet, avoiding the situation where it is placed directly on the ground.
 - (2) Inspections and Maintenance of Packaging

 The following inspections should be performed not less than once a year (once for every ten times in a case where the packaging is used more than ten times a year) and defect of packaging should be repaired, if any, in order to maintain the integrity of packaging.
 - (i) Visual Appearance Inspection
 - (ii) Pressure Durability Inspection
 - (iii) Maintenance of O-ring Used for Containment System
 - (iv) Leakage Rate Measurement Inspection
 - (v) Subcriticality Inspection
 - (vi) Lifting Inspection
 - (3) Actions Prior to Shipment

The following inspections should be performed prior to shipment.

(i) Visual Appearance Inspection

- (ii) Lifting Inspection
- (iii) Weight Measurement Inspection
- (iv) Surface Contamination Measurement Inspection
- (v) Radiation Dose Rate Inspection
- (vi) Subcriticality Inspection
- (vii) Contents Specification Check Inspection
- (viii) Leakage Rate Measurement Inspection
- (4) Precautions for Loading of Package for Shipment
 Package should be securely loaded to the conveyance at the designated tie-down
 portion of the package so as not to move, roll down or fall down from the loading
 position during transport.

11. Issue Date and Expiry Date

(i) Issue Date : May 23, 2022 (ii) Expiry Date : May 22, 2082

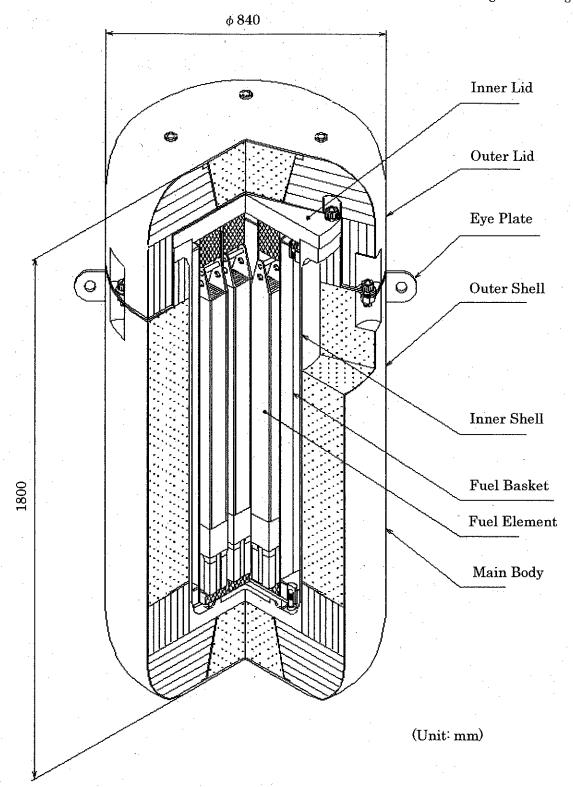


Figure-1 Illustration of JRF-90Y-950K Package (Bird's-eye view)

Table 1 Specification of Contents (Fresh Fuel Element)

	Reactor	JRR-3		JMTR			
Type	Fuel Element	JRR-3 Standard	JRR-3 Follower	JMTR Standard	JMTR Follower		
Number of Fuel Elements (element/Package)		10 or less					
Fuel Type		LEU fuel		LEU fuel			
Material of Nuclear Fuel		Uranium Silicon Aluminum Dispersion Alloy			Uranium Silicon Aluminum Dispersion Alloy		
Physical State		Solid					
Weight	²³⁵ U weight (g or less/package)	4,850	3,100	4,250	2,800		
	U weight (g or less/package)	24,810	15,860	21,740	14,330		
	²³⁵ U weight (g or less /element)	485	310	425	280		
	U weight (g or less /element)	2,481	1,586	2,174	1,433		
Enrichment(wt% or less)		19.95		19.95			
A	Total (GBq or less/package)	29.8					
Activity of Contents	Principal Radionuclide (GBq or less/package)	$^{234}\mathrm{U}$: 28.6 $^{235}\mathrm{U}$: 0.38 $^{236}\mathrm{U}$: 0.59 $^{238}\mathrm{U}$: 0.24					
Burn up (% or less)		0 (Fresh fuel)					
Total Heat Generation Rate (W or less/Package)			0 (Fres				
Cooling time (Day)			0 (Fres	h fuel)			

⁻Loading a transport package with different types of fuel element is allowed for each reactor only when all the fuel elements contained are the same material of nuclear fuel having the same enrichment level.

⁻ The values of weight and heat generation are calculated proportionally from the maximum weight and heat generation for each type of fuel element according to the number of assemblies contained.

Table-2 Specification of Contents (Low Irradiated Fuel Element)

	Reactor	JMTRC				
Type	Fuel Element	Special	Standard	Special	Follower	
Number of Fuel Elements (element/Package)			10 or less			
Fuel Type		HEU fuel	MEU fuel			
Material of Nuclear Fuel		Uranium Aluminum Alloy	Uranium Aluminum Dispersion Alloy			
Physical State		Solid				
	²³⁵ U weight (g or less/package)	2,850	3,170	2,860	2,100	
W-1-1-	U weight (g or less/package)	3,180	7,210	6,500	4,780	
Weight	²³⁵ U weight (g or less /element)	285	317	286	210	
	U weight (g or less /element)	318	721	650	478	
Enrichment(wt% or less)		90.0		46.0		
	Total (GBq or less/package)	·	17.3			
Activity of Contents	Principal Radionuclide (GBq or less/package)		235U : (236U : (238U : (16.2 0.25 0.29 0.05 0.52		
Burn up (% or less)		7.23×10^{-5}		1.76×10^{-5}		
Total Heat Generation Rate (W or less /Package)		4.30×10 ⁻⁵		3.29×10^{-5}		
Cooling time		5,475 Day or more		1,460 Day or more		

⁻Loading a transport package with different types of fuel element is allowed for each reactor only when all the fuel elements contained are the same material of nuclear fuel having the same enrichment level. However, loading with different types of fuel element is allowed even if fuel elements contained are different type or different enrichment level, in case of JMTRC fuel element.

The values of weight and heat generation are calculated proportionally from the maximum weight and heat generation for each type of fuel element according to the number of assemblies contained.

The absorbed dose rate to air at a position 1 m away from the surface of the package is 1 Gy/h or less.

Pipeline and Hazardous Materials Safety Administration

CERTIFICATE NUMBER: USA/0847/B(U)F-96

ORIGINAL REGISTRANT(S):

Edlow International Company 1666 Connecticut Ave, N.W. Suite 201 Washington, DC, 20009 USA