

East Building, PHH-23 1200 New Jersey Ave, SE Washington, D.C. 20590

U.S. Department of Transportation

Hazardous Materials

Pipeline and

COMPETENT AUTHORITY CERTIFICATION FOR A TYPE B(U)F FISSILE RADIOACTIVE MATERIALS PACKAGE DESIGN CERTIFICATE USA/0401/B(U)F-96, REVISION 14

Safety Administration REVALIDATION OF JAPANESE COMPETENT AUTHORITY CERTIFICATE J/111/B(U)F-96

The Competent Authority of the United States certifies that the radioactive material package design described in this certificate satisfies the regulatory requirements for a Type B(U)F package as prescribed in the regulations of the International Atomic Energy Agency¹ and the United States of America².

- 1. Package Identification JMS-87Y-18.5T.
- Package Description and Authorized Radioactive Contents as described in Japanese Certificate of Competent Authority J/111/B(U)F-96, Revision 2 (attached).
- <u>Criticality</u> The minimum criticality safety index is 0.0. The maximum number of packages per conveyance is determined in accordance with Table X of the IAEA regulations cited in this certificate.
- 4. General Conditions
 - a. Each user of this certificate must have in his possession a copy of this certificate and all documents necessary to properly prepare the package for transportation. The user shall prepare the package for shipment in accordance with the documentation and applicable regulations.
 - b. Each user of this certificate, other than the original petitioner, shall register his identity in writing to the Office of Engineering and Research, (PHH-23), Pipeline and Hazardous Materials Safety Administration, U.S. Department of Transportation, Washington D.C. 20590-0001.

¹ "Regulations for the Safe Transport of Radioactive Material, 2012 Edition, No. SSR-6" published by the International Atomic Energy Agency (IAEA), Vienna, Austria.

² Title 49, Code of Federal Regulations, Parts 100-199, United States of America.

CERTIFICATE USA/0401/B(U)F-96, REVISION 14

- c. This certificate does not relieve any consignor or carrier from compliance with any requirement of the Government of any country through or into which the package is to be transported.
- d. Records of Management System activities required by Paragraph 306 of the IAEA regulations¹ shall be maintained and made available to the authorized officials for at least three years after the last shipment authorized by this certificate. Consignors in the United States exporting shipments under this certificate shall satisfy the applicable requirements of Subpart H of 10 CFR 71.
- 5. Special Conditions
 - a. The package is not to be transported by air.
 - b. Maximum decay heat per package is 1.5 kilowatts.
 - c. Known or suspected failed fuel assemblies and fuel with cladding defects greater than pin holes and hairline cracks are not authorized.
 - d. Neutron poison plates in the fuel basket must be constructed in accordance with JAERI document entitled "JMS-87Y-18.5T Package Information" dated June 11, 2003.
 - e. For shipments which enter into or transit the United States, all international approvals and revalidations, including Approval of Packaging and Confirmation of Packaging certificates issued by the government of Japan, shall be issued prior to the commencement of transport.
- Marking and Labeling The package shall bear the marking USA/0401/B(U)F-96 in addition to other required markings and labeling.
- 7. <u>Expiration Date</u> This certificate expires on September 11, 2023. Previous editions which have not reached their expiration date may continue to be used.

(- 3 -)

CERTIFICATE USA/0401/B(U)F-96, REVISION 14

This certificate is issued in accordance with paragraph(s) 810 and 816 of the IAEA Regulations and Section 173.472 and 173.473 of Title 49 of the Code of Federal Regulations, in response to the November 2, 2018 petition by Edlow International Company, Washington, DC, and in consideration of other information on file in this Office.

Certified By:

November 16, 2018 (DATE)

William Schoonover Associate Administrator for Hazardous Materials Safety

Revision 14 - Issued to endorse Japanese Certificate of Competent Authority No. J/111/B(U)F-96 (Rev.2) dated August 3, 2018.

IDENTIFICATION MARK J/111/B(U) F-96(Rev.2)

COMPETENT AUTHORITY OF JAPAN

CERTIFICATE FOR APPROVAL OF PACKAGE DESIGN FOR THE TRANSPORT OF RADIOACTIVE MATERIALS

ISSUED BY

NUCLEAR REGULATION AUTHORITY 1-9-9, ROPPONGI MINATO-KU TOKYO, JAPAN

Reference of J/111/B(U)F-96 (Rev.2) Page 1 of 7 Pages

CERTIFICATE FOR APPROVAL OF PACKAGE DESIGN FOR THE TRANSPORT OF RADIOACTIVE MATERIALS

This is to certify, in response to the application by Japan Atomic Energy Agency, that the package design described herein complies with the design requirements for a package containing spent fuel elements, specified in the 2012 Edition of the Regulations for the Safe Transport of Radioactive Material (International Atomic Energy Agency, Safety Standards Series No.SSR-6) and the Japanese rules based on the Act on Regulation of Nuclear Source Material, Nuclear Fuel Material and Reactors.

This certificate does not relieve the consignor from compliance with any requirement of the government of any country through or into which the package will be transported.

COMPETENT AUTHORITY IDENTIFICATION MARK : J/111/B(U)F-96(Rev.2)

ugust 3, 2018

Kazuya Aoki

Director, Division of Licensing for Nuclear Fuel Facilities

Secretariat of Nuclear Regulation Authority Competent Authority of JAPAN for Package Design Approval

-					
T	1. The Competent Authority Identification Mark	: J/111/B(U)F-96(Rev. 2)			
	2. Name of Package	: JMS-87Y-18.5T : Type B(U) package containing fissile materials			
	3. Type of Package				
	4. Specification of Package				
	(1) Materials of Packaging				
	(i) Body & Lid	Stainless steel			
	(ii) Basket	Stainless steel, Boral plate			
	(iii) Shock absorber	Stainless steel, Fir-plywood			
	(2) Total Weight of Packaging	: 18110 kg or less			
	(3) Outer Dimensions of Packaging				
	(i) Outer Diameter	Approximately 1.9 m			
	(ii) Height	Approximately 2.0 m			
	(4) Total Weight of Package	: 18440 kg or less			
	(5) Illustration of Package	See the attached Figure			
	5. Specification of Radioactive Contents	See the attached Table			

6. Description of Containment System

Containment system consists of the body, the lid, the vent valve and the drain valve made of the stainless steel.

Silicone rubber is used for contact surface of lid, valves, and valve seat.

7. For Package containing Fissile Materials

(1) Restrictions on Package

(i) Restriction Number "N"	: No restriction
(ii) Array of package	: No restriction
(iii) Criticality Safety Index(CSI)	:0

(2) Description of Confinement System

Confinement system consists of the basket which maintains the fuel elements contained in the package.

(3) Assumptions of Leakage of Water into Package

It is assumed in criticality analysis that water will leak into void spaces of inner packaging.

(4) Special Features in Criticality Assessment

There is no special device.

Page 3 of 7 Pages

8. For Type B(M) Packages, a statement regarding prescriptions of Type B(U) Package that do not apply to this Package

No application. (This package is Type B(U))

9. Assumed Ambient Conditions

(i) Ambient Temperature Range	: − 40°C ~ 38°C
(ii) Insolation Data	: Table 12 of IAEA Regulation(No.SSR-6)

10. Handling, Inspection and Maintenance

- (1) Handling Instructions
 - (i) Package should be handled carefully in accordance with the schedule and procedures established properly taking all possible safety measures.
 - (ii) Package should be handled using appropriate lifting devices and the crane.
 - (iii) When packaging is stored outdoors, it should be covered with an appropriate waterproof sheet, avoiding the situation where it is placed directly on the ground.
- (2) Inspections and Maintenance of Packaging
 - The following inspections should be performed not less than once a year (once for every ten times in a case where the packaging is used not less than ten times a year) and defect of packaging should be repaired, if any, in order to maintain the integrity of packaging.
 - (i) Visual Appearance Inspection (ii) Pressure Durability Inspection
 - (iii) Leakage Rate Measurement Inspection
 - (iv) Maintenance of Orring, Valve, etc. Used for Containment System
 - (v) Shielding Inspection (vi) Subcriticality Inspection
 - (vii) Heat Transfer Inspection (viii) Lifting Inspection
- (3) Actions prior to Shipment

The following inspections should be performed prior to shipment.

- (i) Visual Appearance Inspection (ii) Lifting Inspection
- (iii) Weight Measurement Inspection (iv) Surface Contamination Measurement Inspection
- (v) Radiation Dose Rate Inspection (vi) Subcriticality Inspection
- (vii) Contents Specification Check Inspection
- (viii) Surface Temperature Inspection (ix) Leakage Rate Measurement Inspection
- (x) Pressure Inspection
- (4) Precautions for Loading of Package for Shipment

Package should be securely loaded to the conveyance at the designated tie down portion of the packaging so as not to move, roll down or fall down from the loading position during transport.

Page 4 of 7 Pages

11. Issue Date and Expiry Date (i) Issue Date :Sep.12, 2018 (ii) Expiry Date :Sep.11, 2023

Figure Illustration of JMS-87Y-18.5T Package (Unit : mm)

Table Specification of contents(1/2)

Group		p	Group1		Group 2		
	Reactor		JMTR		JMTR		
Time	e Spent Fuel Elements		High Enriched Uranium Fuels(HEU)		Medium Enriched Uranium Fuels(MEU)		
Type			JMTR Standard Fuel Elements(HEU)	JMTR Fuel Followers (HEU)	JMTR Standard Fuel Elements(MEU)	JMTR Fuel Followers (MEU)	
Number of Spent Fuel Elements(element/package)		ent Fuel nt/package)	Less than or equal to 30		Less than or equal to 30		
²³⁵ U Initial Enrichment (wt%)		hment (wt%)	Less than or equal to 93.3		Less than or equal to 46.0		
Initial Gross Weight of ²³⁵ U (g/element)		Weight of ment)	Less than or equal to 284.3	Less than or equal to 198.4	Less than or equal to 315.6	Less than or equal to 208.7	
Initial Gross Weight of U (g/element)		Weight of nent)	Less than or equal to 307	Less than or equal to 214	Less than or equal to 719	Less than or equal to 475	
	Fuel Core		Uranium-Aluminum Alloy		Uranium-Aluminum Dispersion Alloy		
Material	ial Cladding and Side Plate		Aluminum Alloy		Aluminum Alloy		
	Burn-up (%)		Less than or equal to 40		Less than or equal to 40		
Co	ooling Tim	e (days)	More than or equal to 360		More than or equal to 360		
Condition		on	Solid		Solid		
		Total	1.65×104	1.16×104	1.78×10 ⁴	1.18×10 ⁴	
	y of Con- ents elements)	Principal radionuclide	⁹⁵ Zr :9.62×10 ²	⁹⁵ Zr :6.76×10 ²	⁹⁵ Zr :1.02×10 ³	⁹⁵ Zr :6.79×10 ²	
Activity			⁹⁵ Nb :2.08×10 ³	⁹⁵ Nb :1.46×10 ³	⁹⁵ Nb :2.21×10 ³	⁹⁵ Nb : 1.47×10 ³	
(TBq/30 e			¹⁴⁴ Ce:4.61×10 ³	144 Ce: 3.24×10^{3}	¹⁴⁴ Ce:4.98×10 ⁸	¹⁴⁴ Ce: 3.30×10 ³	
-			¹⁴⁴ Pr: 4.61×10 ³	¹⁴⁴ Pr: 3.24×10 ³	¹⁴⁴ Pr: 4.98×10 ³	¹⁴⁴ Pr:3.30×10 ³	
			¹⁴⁷ Pm:9.39×10 ²	¹⁴⁷ Pm:6.60×10 ²	¹⁴⁷ Pm:1.00×10 ³	¹⁴⁷ Pm:6.65×10 ²	
Total Heat Generation Rate (KW/30 elements)		eration Rate ments)	1.83	1.29	1.98	1.32	

* Each package shall be loaded with a single fuel (i.e. only kind of "Spent Fuel Elements") or mixed fuels (i.e. two or more kinds of "Spent Fuel Elements") within an identical group. Regardless of the adobe condition, the loading of mixed fuels belonging to the group 2 and group 3 is acceptable up to 30 fuel elements.

In case of loading of mixed fuels, "Activity of contents" and "Total Heat Generation Rate" shall be determined by the proportional distribution.

Table Specification of contents(2/2)

Group		Group 3			Group 4		
	Reactor		JMTR			JRR-3	
Tum		Low Enriched Uranium Fuels(LEU)			Low Enriched Uranium Fuels(LEU)		
1yp	Spent	JMTR Standard Fuel		JMTR Fuel Followers		JRR-3 Standard-type	JRR-3 Follower-type
	Fuel Elements	Elements (LEU)		(LEU)		Fuel Elements	Fuel Elements
						(LEU)	(LEU)
Nur	nber of Spent Fuel	Less than or equal to 30			Less than or equal to 30		
Elements(element/package)							
²³⁵ U Initial Enrichment (wt%)		Less than or equal to 19.95			Less than or equal to 19.95		
Initial Gross Weight of ²³⁵ U		Less t	han or	Less than or		Less than or	Less than or
	(g/element)	equal	to 450	equal to 302		equal to 315	equal to 205
Initia	l Gross Weight of U	Less t	han or	Less than or		Less than or	Less than or
	(g/element)	equal t	o 2 338	equal to 1569		equal to 1612	equal to 1049
Mate	Fuel Core	U	Uranium-Silicon-Aluminum Dispersion Alloy		Uranium-Aluminum Dispersion Alloy		
rial	Cladding and Side Plate	Aluminum Alloy			Aluminum Alloy		
Burn-up (%)		Less than or equal to 50	Less than or equal to 60_	Less than or equal to 50	Less than or equal to 60	Less than or equal to 50	
Cooling Time (days)		More than or equal to 420	More than or equal to 540	More than or equal to 420	More than or equal to 540	More than or equal to 360	
	Condition	Solid			Solid		
	Total	2.43×104	2.12×104	1.63×104	<u>1.43×104</u>	1.76×104	1.11×104
		⁹⁵ Zr :8.28×10 ²	⁹⁰ Sr :7.47×10 ²	⁹⁵ Zr :5.56×10 ²	⁹⁰ Sr :5.04×10 ²	⁹⁵ Zr :6.64×10 ²	⁹⁵ Zr :4.21×10 ²
Activi	ty of	⁹⁵ Nb :1.76×10 ³	⁹⁰ Y :7.47×10 ²	⁹⁵ Nb :1.18×10 ³	⁹⁰ Y :5.04×10 ²	⁹⁵ Nb :1.45×10 ³	⁹⁵ Nb :9.17×10 ²
Conte	ents Principal	¹⁴⁴ Ce:7.41×10 ³	¹³⁷ Cs:7.74×10 ²	¹⁴⁴ Ce:4.97×10 ³	$^{137}Cs:5.22{ imes}10^2$	¹⁴⁴ Ce:5.27×10 ³	¹⁴⁴ Ce: 3.34×10 ³
(TBq/3	radionuclide	¹⁴⁴ Pr:7.41×10 ³	¹⁴⁴ Ce:6.63×10 ³	¹⁴⁴ Pr:4.97×10 ³	¹⁴⁴ Ce: 4.47×10 ³	¹⁴⁴ Pr: 5.27×10 ³	¹⁴⁴ Pr: 3.34×10 ³
I men	.1.57	¹⁴⁷ Pm:1.44×10 ³	¹⁴⁴ Pr:6.63×10 ³	¹⁴⁷ Pm:9.68×10 ²	¹⁴⁴ Pr:4.47×10 ³	¹⁴⁷ Pm:9.58×10 ²	¹⁴⁷ Pm:6.07×10 ²
			¹⁴⁷ Pm:1.40×10 ³		¹⁴⁷ Pm:9.43×10 ²		
Total Heat Generation Rate (KW/30 elements)		2.80	2.40	1.88	1.61	1.94	1.23

** Each package shall be loaded with a single fuel (i.e. only kind of "Spent Fuel Elements") or mixed fuels (i.e. two or more

kinds of "Spent Fuel Elements") within an identical group. Regardless of the adobe condition, the loading of mixed fuels belonging to the group 2 and group 3 is acceptable up to 30 fuel elements.

In case of loading of mixed fuels, "Activity of contents" and "Total Heat Generation Rate" shall be determined by the proportional distribution.

U.S. Department of Transportation

Pipeline and Hazardous Materials Safety Administration

CERTIFICATE NUMBER: USA/0401/B(U)F-96

ORIGINAL REGISTRANT(S):

Edlow International Company 1666 Connecticut Ave, N.W Suite 201 Washington, DC, 20009 USA

Department of Energy U.S. Department of Energy 1000 Independence Ave, SW EM-60 Washington, DC, 20585 USA

Secured Transportation Services 5210 Palmero Court Suite 107 Buford, GA, 30518 USA