NRC FORM 618 U.S. NUCLEAR REGULATORY COMMISSION (8-2000) 10 CFR 71 CERTIFICATE OF COMPLIANCE FOR RADIOACTIVE MATERIAL PACKAGES CERTIFICATE NUMBER REVISION NUMBER d. PACKAGE IDENTIFICATION NUMBER c. DOCKET NUMBER PAGE PAGES USA/9293/B(U)F-85 OF 71-9293 1 10 9293 7

2. PREAMBLE

- a. This certificate is issued to certify that the package (packaging and contents) described in Item 5 below meets the applicable safety standards set forth in Title 10, Code of Federal Regulations, Part 71, "Packaging and Transportation of Radioactive Material."
- b. This certificate does not relieve the consignor from compliance with any requirement of the regulations of the U.S. Department of Transportation or other applicable regulatory agencies, including the government of any country through or into which the package will be transported.
- 3. THIS CERTIFICATE IS ISSUED ON THE BASIS OF A SAFETY ANALYSIS REPORT OF THE PACKAGE DESIGN OR APPLICATION
- a. ISSUED TO (Name and Address)
 TN Americas LLC
 7135 Minstrel Way
 Columbia, MD 21045

TITLE AND IDENTIFICATION OF REPORT OR APPLICATION
 Transnuclear, Inc., application dated May 19, 1999, as supplemented.

4. CONDITIONS

This certificate is conditional upon fulfilling the requirements of 10 CFR Part 71, as applicable, and the conditions specified below.

5.

- (a) Packaging
 - (1) Model No. TN-68 Transport Package
 - (2) Description

The TN-68 is predominantly a steel package that is used to transport up to 68 intact BWR fuel assemblies with or without channels. The overall dimensions of the package are 271 inches long and 144 inches in diameter with the impact limiters installed.

The package generally consists of four components, the fuel basket assembly, a containment vessel within a forged steel cask body, a radial neutron shield, and impact limiters.

The basket assembly locates and supports the fuel assemblies, transfers heat to the cask body wall and provides neutron absorption to satisfy sub-criticality requirements. The basket structure consists of an assembly of stainless steel cells, joined by fusion welding of 1.75 inch wide stainless steel plates. Above and below the plates are slotted borated aluminum (or boron carbide/aluminum) metal matrix composite neutron poison plates which form an egg-crate structure. This construction forms a honey-comb like structure of cell liners which provides compartments for 68 fuel assemblies. The nominal dimensions of each cell is 6.0 inches x 6.0 inches.

A thick-walled (6.0 inch), forged steel cask body for gamma shielding surrounds the containment vessel, by an independent shell and bottom plate of carbon steel. The gamma shield completely surrounds the containment vessel inner shell and bottom closure. The thickness of the bottom of the cask body is 8.25 inches. A 4.5 inch thick steel gamma shield is also welded to the inside of the containment lid.

NRC FORM 618 U.S. NUCLEAR REGULATORY COMMISSION (8-2000) 10 CFR 71 CERTIFICATE OF COMPLIANCE FOR RADIOACTIVE MATERIAL PACKAGES REVISION NUMBER a. CERTIFICATE NUMBER c. DOCKET NUMBER d. PACKAGE IDENTIFICATION NUMBER PAGE PAGES USA/9293/B(U)F-85 71-9293 2 OF 9293 7 10

5.(a)(2) continued

The containment boundary consists of the inner shell and bottom plate, shell flange, lid outer plates, lid bolts, penetration cover plate and bolts and the inner metallic O-rings of the lid seal and the two lid penetrations (vent and drain). The containment vessel length is approximately 189 inches with a wall thickness of 1.5 inches. The cylindrical cask cavity has a nominal diameter of 69.5 inches and a length of 178 inches. The containment lid is 5 inches thick and is fastened to the cask body with 48 bolts. Double metallic O-ring seals are provided for lid closure. To preclude air in-leakage, the cask cavity is pressurized with helium to above atmospheric pressure. There are two penetrations through the containment vessel which are located in the lid. These penetrations are for draining and venting. Double metallic seals are also used on these two lid penetrations. The OP port provides access to the interspace lid seals for leak testing purposes. The OP transport cover is not part of the containment boundary.

Neutron shielding is provided by a borated polyester resin compound surrounding the gamma shield. The resin compound is cast into long, slender aluminum containers. The total thickness of the resin and aluminum is approximately 6 inches. The array of resin-filled containers is enclosed within a smooth 0.75 inch outer steel shell constructed of two half cylinders.

The package has impact limiters at each end of the cask body. The impact limiters consist of balsa wood and redwood blocks, encased in sealed stainless steel shells that maintain the wood in a dry atmosphere and provide wood confinement when crushed during a free drop. The impact limiters have internal radial gussets for added strength and confinement. The impact limiters are attaching to each other using 13 tie rods and to the cask by eight bolts attaching to brackets welded to the outer shell in eight locations (four bolting locations per impact limiter).

and .

The approximate dimensions and weights of the package are as follows:

Overall length (with impact limiters, in)	271
Overall length (without impact limiters, in)	197
Impact Limiter Outside diameter, (in)	144
Outside diameter (without impact limiters, in)	98
Cavity diameter (in)	69.5
Cavity length (in)	178
Containment shell thickness (in)	1.5
Containment vessel length (in)	184
Body wall thickness (in)	7.5
Containment lid thickness (in)	5
Overall lid thickness (in)	9.5
Bottom thickness (in)	9.75
Resin and aluminum box thickness (in)	6
Outer shell thickness (in)	0.75
Overall basket length (in)	164

NRC FORM 618 U.S. NUCLEAR REGULATORY COMMISSION (8-2000) 10 CFR 71 CERTIFICATE OF COMPLIANCE FOR RADIOACTIVE MATERIAL PACKAGES REVISION NUMBER CERTIFICATE NUMBER c. DOCKET NUMBER d. PACKAGE IDENTIFICATION NUMBER PAGE PAGES 71-9293 USA/9293/B(U)F-85 OF 9293 7 3 10

5.(a)(2) continued

Maximum weight of package (pounds)	272,000
Maximum weight of BWR fuel contents (pounds)	47,900
Maximum weight of impact limiters and attachments (pounds)	32,000

5.(a)(3) Drawings

The package is constructed and assembled in accordance with TN drawings:

972-71-1, Revision 1 972-71-2, Revision 2 972-71-3, Revision 4 972-71-4, Revision 2 972-71-5, Revision 1 972-71-6, Revision 1 972-71-7, Revision 3 972-71-8, Revision 2 972-71-9, Revision 2 972-71-10, Revision 1 972-71-11, Revision 1 972-71-12, Revision 0 972-71-13, Revision 0 972-71-14, Revision 1

5.(b) Contents

(1) Type and form of material

Contents are limited to 68 unconsolidated intact irradiated GE BWR fuel assemblies with zircalloy cladding. An intact fuel assembly is a spent nuclear fuel assembly without known or suspected cladding defects greater than pinhole leaks or hairline cracks. Partial fuel assemblies (i.e. spent fuel assemblies from which fuel rods are missing), shall not be classified as intact fuel assemblies unless dummy fuel rods are used to displace an amount of water equal to that displaced by the original rod(s).

Spent nuclear fuel may be transported with or without channels. Any fuel channel thickness up to 0.120 is acceptable on any of the fuel designs shown below. The maximum initial rod pressurization is 155 psig. The maximum fuel assembly length is 176.2 inches and the maximum fuel assembly width is 5.44 inches.

Permissible fuel assemblies are limited as stated in table 1 (fuel types may be C, D, or S lattice):

(8-2000) 10 CFR 71

CERTIFICATE OF COMPLIANCE FOR RADIOACTIVE MATERIAL PACKAGES

1.	a. CERTIFICATE NUMBER	b. REVISION NUMBER	c. DOCKET NUMBER	d. PACKAGE IDENTIFICATION NUMBER	PAGE		PAGES
	9293	7	71-9293	USA/9293/B(U)F-85	4	OF	10
					1		

5.(b)(1) continued

Table 1, Fuel characteristics

	Table 1, 1 del characteristics												
GE fuel generation	model	array	rod pitch	fuel rods	rod od	clad thick	pellet dia.	water rods	water rod od	water rod id	U content (MTU/ Assembly)	Max active fuel length	
2A	2a	7x7	0.738	49	0.570	0.036	0.488	0	х	х	0.1977	144	
2, 2B	2	7x7	0.738	49	0.563	0.032	0.487	0	х	х	0.1977	144	
3, 3A, 3B	3	7x7	0.738	49	0.563	0.037	0.477	0	х	х	0.1896	144	
4, 4A,4B	4	8x8	0.640	63	0.493	0.034	0.416	1	0.493	0.425	0.1880	146	
5	5	8x8	0.640	62	0.483	0.032	0.410	2	0.591	0.531	0.1876	150	
6, 6B	5	8x8	0.640	62	0.483	0.032	0.410	2	0.591	0.531	0.1876	150	
7, 7B	5	8x8	0.640	62	0.483	0.032	0.410	2	0.591	0.531	0.1876	150	
8, 8B -2w	82	8x8	0.640	62	0.483	0.032	0.411	2	0.591	0.531	0.1885	150	
8, 8B-4W*	84	8x8	0.640	60	0.483	0.032	0.411	4	0.591	0.531	0.1824	150	
8, 8B-4W**	84	8x8	0.640	60	0.483	0.032	0.411	4	0.483	0.431	0.1824	150	
9, 9B	9	8x8	0.640	60	0.483	0.032	0.411	1	1.34	1.26	0.1824	150	
10	9	8x8	0.640	60	0.483	0.032	0.411	/1/	1.34	1.26	0.1824	150	
11	11	9x9	0.566	74	0.440	0.028	0.376	2	0.98	0.92	0.1757	146 full, 90 partial	
13	11	9x9	0.566	74	0.440	0.028	0.376	2	0.98	0.92	0.1757	146 full, 90 partial	
12	12	10x10	0.510	92	0.404	0.026	0.345	2	0.98	0.92	0.1857	150 full, 93 partial	

^{*2} large water rods

Notes on table 1:

- 1. All dimensions in inches.
- 2. All fuel channels 5.278 inches inside, and from 0.065 to 0.120 inches thick.
- 3. All fuels are evaluated with 96.5% theoretical density and 3.7 wt% U-235 average enrichment.
- 4. The fuel pitch is for C and D lattice designs. The S lattice fuels have a smaller pitch, which is less reactive.
- 5. The fuel designs designated by GE as 6, 6B, 7, and 7B are sometimes referred to as "P" (pressurized) and "B" (barrier).

^{**2} small water rods

NRC FORM 618 U.S. NUCLEAR REGULATORY COMMISSION (8-2000) 10 CFR 71 CERTIFICATE OF COMPLIANCE FOR RADIOACTIVE MATERIAL PACKAGES REVISION NUMBER d. PACKAGE IDENTIFICATION NUMBER PAGES CERTIFICATE NUMBER c. DOCKET NUMBER PAGE 9293 71-9293 USA/9293/B(U)F-85 5 OF 10 7

5.(b)(1) continued

Provided all of the requirements of this section are met, the bounding fuel characteristics are: a) maximum initial lattice-average enrichment is 3.7%; b) the minimum initial bundle average enrichment is 3.3%; c) the maximum assembly average burnup is 40,000 MWD/MTU; d) the minimum cool time is 10 years; and e) the maximum heat load per assembly is 0.313 Kw.

Fuel assemblies are categorized into three types, Type I, Type II and Type III. There are two basic loading configurations for the package. The first configuration is a mixture of Type I and Type II fuel assemblies. The second configuration is Type III fuel assemblies. The maximum burnup, minimum initial enrichments and cooling times for each of the three fuel assembly types is contained in the tables below.

In the mixed Type I and Type II configuration, Type I assemblies shall be placed only into the interior compartments of the fuel basket as shown in figure 5.3-3 of the application. Type II fuel assemblies may be placed in any basket fuel compartment.

In the second configuration, Type III fuel assemblies may be placed in any basket fuel compartment.

NRC FORM 618 (8-2000) 10 CFR 71

U.S. NUCLEAR REGULATORY COMMISSION

CERTIFICATE OF COMPLIANCE FOR RADIOACTIVE MATERIAL PACKAGES

a. CERTIFICATE NUMBER	b. REVISION NUMBER	c. DOCKET NUMBER	d. PACKAGE IDENTIFICATION NUMBER	PAGE		PAGES
9293	7	71-9293	USA/9293/B(U)F-85	6	OF	10

Acceptable cooling time as a function of maximum burnup and minimum initial enrichment and BWR Cooling times (years) TYPE I BWR Fuel

Burnun (GWd/MTH)

		Burn	up (G	Wd/M1	IU)							
Initial Enrichment (bundle ave %w)	15	20	30	32	33	34	35	36	37	38	39	40
1.0	10	10										
1.1	10	10										
1.2	10	10										
1.3	10	10										
1.4	10	10										
1.5	10	10	10	10	511	1110	_11					
1.6	10	10	10	10	10	11	11/	11				
1.7	10	10	10	10	10	11	11	11	12			
1.8	10	10	10	10	10	11	11	11	11	12		
1.9	10	10	10	10	10	11	11	110	11	12		
2.0	10 🗸	10	10	10	10	10	11	211	11	12	12	
2.1	10	10	10	10	10	10	11	11	11	12	12	12
2.2	10	10	10	10	10	10	11	11	11	12	12	12
2.3	10	10	10	10	10	10	11	111	11	11	12	12
2.4	10	10	10	10	10	10	10	111	11	11	12	12
2.5	10	10	10	107	10	10	10	11	11	11	12	12
2.6	10	10	10	10	10	10	10	11	- 11	11	12	12
2.7	10	10	10	10	10	10	10	10	11	11	11	12
2.8	10	10	10	10	10	10	10	10	10	11	11	12
2.9	10	10	10	10	10	10	10	10	10	11	11	12
3.0	10	10	10	10	10	10	10	10	10	10	11	12
3.1	10	10	10	10	10	10	10	10	10	10	11	12
3.2	10	10	10	10	10	10	10	10	10	10	10	11
3.3	10	10	10	10	10	10	10	10	10	10	10	10
3.4	10	10	10	10	10	10	10	10	10	10	10	10
3.5	10	10	10	10	10	10	10	10	10	10	10	10
3.6	10	10	10	10	10	10	10	10	10	10	10	10
3.7	10	10	10	10	10	10	10	10	10	10	10	10

NRC FORM 618 (8-2000) 10 CFR 71

U.S. NUCLEAR REGULATORY COMMISSION

CERTIFICATE OF COMPLIANCE FOR RADIOACTIVE MATERIAL PACKAGES

a. CERTIFICATE NUMBER	b. REVISION NUMBER	c. DOCKET NUMBER	d. PACKAGE IDENTIFICATION NUMBER	PAGE		PAGES
9293	7	71-9293	USA/9293/B(U)F-85	7	OF	10
0200	,	7 1 0200	00/1/0200/2(0)/	,	•	10

Acceptable cooling time as a function of maximum burnup and minimum initial enrichment and BWR Cooling times (years) TYPE II BWR Fuel

Burnun (GWd/MTII)

		Burr	านp ((GWd/l	MTU)							
Initial Enrichment (bundle ave %w)	15	20	30	32	33	34	35	36	37	38	39	40
1.0	18	21										
1.1	17	20										
1.2	17	20										
1.3	17	20										
1.4	17	20										
1.5	16	19	25	26	26							
1.6	16	19	25	26	26							
1.7	16	19	25	25	26	26	27					
1.8	16	19	24	25	26	26	27	27				
1.9	16	19	24	25	25	26	27	27				
2.0	16	18	24	25	25	26	26	27	28			
2.1	15	18	23	25	25	26	26	27	27			
2.2	15	18	23	25	25	25	26	27	27			
2.3	15	18	23	24	25	25	26	26	27	27		
2.4	15	18	22	24	24	25	26	26	27	27		
2.5	15	17	22	24	24	25	25	26	26	27		
2.6	15	17/	22	24	24	24	25	26	26	27		
2.7	15	17	22	24	24	24	25	26	26	26	27	27
2.8	14	17	22	23	24	24	25	25	26	26	27	27
2.9	14	17	22	23	23	24	24	25	26	26	27	27
3.0	14	17	21	23	23	23	24	25	25	26	27	27
3.1	14	17	21	23	23	23	24	25	25	26	27	27
3.2	13	16	21	23	23	23	24	24	25	25	26	27
3.3	13	16	21	23	22	23	23	24	25	25	26	26
3.4	13	16	21	23	22	23	23	24	25	25	26	26
3.5	13	16	21	22	22	23	23	24	25	25	26	26
3.6	13	16	21	21	22	22	23	24	25	25	26	26
3.7	12	15	20	21	22	22	23	24	25	25	25	26

NRC FORM 618 (8-2000) 10 CFR 71

U.S. NUCLEAR REGULATORY COMMISSION

CERTIFICATE OF COMPLIANCE FOR RADIOACTIVE MATERIAL PACKAGES

a. CERTIFICATE NUMBER	b. REVISION NUMBER	c. DOCKET NUMBER	d. PACKAGE IDENTIFICATION NUMBER	PAGE		PAGES
9293	7	71-9293	USA/9293/B(U)F-85	8	OF	10

Acceptable cooling time as a function of maximum burnup and minimum initial enrichment and BWR Cooling times (years) TYPE III BWR Fuel

Burnup (GWd/MTU)

	Ви	mup (t	GWd/N	110)								
Initial Enrichment (bundle ave %w)	15	20	30	32	33	34	35	36	37	38	39	40
1.0	10	11										
1.1	10	11										
1.2	10	10										
1.3	10	10										
1.4	10	10										
1.5	10	10	15	16	16	17	17					
1.6	10	10	14	16	16	17	17	17				
1.7	10	10	14	15	16	16	17	17	17			
1.8	10	10	14	15	15	16	16	17	17	18		
1.9	10	10	14	15	15	16	16	17	17	18		
2.0	10	10	14	15	15	16	16	16	17	17	18	
2.1	10	10	14	15	15	15	[®] 16	1 6	16	17	18	18
2.2	10	10	13	_14	15	15	16	16	16	17	17	18
2.3	10	10	13	14	15	15	16	16	16	17	17	18
2.4) 10°	10	13	W14	15	15	15	16	16	17	17	18
2.5	10	10	# 13	14	14	15/	1 15	16	16	16	17	18
2.6	10	10	13	14	14	15	15	16	16	16	17	17
2.7	10	10	13	14	214.0	15	15	15	16	16	17	17
2.8	10	10	13	13	14	14	15	15	16	16	17	17
2.9	10	10	13	13	14	14	15	15	15	16	16	17
3.0	10	10	12	13	14	14	14	15	15	16	16	17
3.1	10	10	112	13	14	14	14	15	15	15	16	16
3.2	10	10	12	13	14	14	14	15	15	15	16	16
3.3	10	10	12	13	13	14	14	14	15	15	16	16
3.4	10	10	12	13	13	13	14	14	15	15	16	16
3.5	10	10	12	13	13	13	14	14	14	15	15	16
3.6	10	10	12	12	13	13	14	14	14	15	15	15
3.7	10	10	12	12	13	13	14	14	14	15	15	15

NRC FORM 618

U.S. NUCLEAR REGULATORY COMMISSION

(8-2000) 10 CFR 71

CERTIFICATE OF COMPLIANCE FOR RADIOACTIVE MATERIAL PACKAGES

	FOR RADIOACTIVE MATERIAL PACKAGES												
1.	a. CERTIFICATE NUMBER	b. REVISION NUMBER	c. DOCKET NUMBER	d. PACKAGE IDENTIFICATION NUMBER	PAGE		PAGES						
	9293	7	71-9293	USA/9293/B(U)F-85	9	OF	10						

5.(b) continued

(2) Maximum quantity of material per package

The maximum contents weight is 75,600 pounds. The maximum weight of the irradiated fuel contents is 47,900 pounds.

(3) Decay Heat Limit

Maximum decay heat per package not to exceed 21.2kW. The maximum heat load per assembly is 0.313 kW/assembly.

(c) Criticality Safety Index

0.0

- 6. In addition to the requirements of Subpart G of 10 CFR Part 71:
 - (a) Each packaging must meet the Acceptance Tests and Maintenance Program of Chapter 8 of the application, as supplemented.
 - (b) The package shall be prepared for shipment and operated in accordance with the Operating Procedures of Chapter 7 of the application, as supplemented.
- 7. Known or suspected fuel assemblies with cladding defects greater than pin hole leaks and or hairline cracks are not authorized.
- 8. The package authorized by this certificate is hereby approved for use under the general license provisions of 10 CFR 71.17.
- 9. Fabrication of new packagings in not authorized.
- 10. Transport by air of fissile material is not authorized.
- 11. Revision No. 6 of this certificate may be used until May 31, 2022.
- 12. Expiration date: May 31, 2026.

NRC FORM 618 U.S. NUCLEAR REGULATORY COMMISSION (8-2000) 10 CFR 71 CERTIFICATE OF COMPLIANCE FOR RADIOACTIVE MATERIAL PACKAGES REVISION NUMBER d. PACKAGE IDENTIFICATION NUMBER PAGES a. CERTIFICATE NUMBER c. DOCKET NUMBER PAGE 9293 71-9293 USA/9293/B(U)F-85 10 OF 10 7

<u>REFERENCES</u>

Transnuclear, Inc., application dated May 19, 1999.

Supplements dated March 2, October 18, and November 13, 2000, January 12, 2001, January 20, 2006, January 6, 2011; January 27, 2014, January 19, 2016; November 18, 2017, and April 12, 2021.

FOR THE U.S. NUCLEAR REGULATORY COMMISSION

John B. McKirgan Digitally signed by John B. McKirgan Date: 2021.05.21 14:12:28 -04'00'

John McKirgan, Chief
Storage and Transportation Licensing Branch
Division of Fuel Management
Office of Nuclear Material Safety
and Safeguards

Date: 5/14/21

UNITED STATES NUCLEAR REGULATORY COMMISSION WASHINGTON, D.C. 20555-0001

SAFETY EVALUATION REPORT
Docket No. 71-9293
Model No. TN-68 Package
Certificate of Compliance No. 9293
Revision No. 7

SUMMARY

By application dated April 12, 2021, TN Americas LLC (TNA or the applicant) requested an amendment to Certificate of Compliance (CoC) No. 9293, for the Model No. TN-68 Package. TNA requested renewal of the package's CoC.

Staff reviewed these changes and concludes that they do not affect the ability of the package to meet the requirements of 10 CFR Part 71.

EVALUATION

The applicant requested a 5-year renewal of the transportation package.

CONDITIONS

Condition No. 11 has been updated to allow continued use of the previous revision of the certificate for approximately one year.

Condition No. 12 has been updated to expire May 31, 2026.

CONCLUSION

Based on the statements contained in the application, and the conditions listed above, the staff concludes that the changes indicated do not affect the ability of the package to meet the requirements of 10 CFR Part 71.

Issued with Certificate of Compliance No. 9293, Revision No. 7.